
Using the X Window System
HP 9000 Series 300/800 Computers

HP Part Number 98794-90001

Flin- HEWLETT
~~ PACKARD

Hewlett-Packard Company
1000 NE Circle Blvd., Corvallis OR 97330

Notice
The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

warranty

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

UNIX is a registered trademark of AT&T in the USA and other countries.

Courier, Helvetica, and Times © 1984, 1987 Adobe Systems, Inc. Portions ©
1988 Digital Equipment Corporation.

Helvetica is registered trademark of Linotype.

Microsoft and Presentation Manager are registered trademarks of Microsoft.

OSF /Motif is a trademark of the Open Software Foundation, Inc. in the USA
and other countries.

Certification of conformance with the OSF /Motif user environment is pending.

© 1989 Hewlett-Packard

Printing History
The manual printing date and part number indicate its current edition. The
printing date will change when a new edition is printed. Minor changes may be
made at reprint without changing the printing date. The manual part number
will change when extensive changes are made.

Manual updates may be issued between editions to correct errors or document
product changes. To ensure that you receive these updates or new editions, you
should subscribe to the appropriate product support service. See your HP sales
representative for details.

December 1988 ... Edition 2
September 1989 ... Edition 3

iii

Contents

1. How to Improve Your X Life
How This Manual Is Organized 1-1
Conventions 1-3
Running HP- UX: Some Tips . 1-4

What Is HP-UX and the X Window System? 1-4
Why Background Processing Is IInportant . 1-5
Case Sensitivity and Other Typographical Tips 1-5
Working with HP-UX Manuals 1-6
Logging In to HP-UX 1-6
For More Information 1-6

Where to Go Next 1-8

2. Understanding Window Systems
What Is the X Window System? 2-1

XII Is Based on the Server-Client Interaction Model 2-2
Multi-Tasking Makes XII a Powerful Tool 2-3
X Allows Both Local and Remote Access 2-3
The X Window System Allows Multi-Vendor Networking. 2-4

The Parts of a Typical X Window System 2-4
The Computer Hardware System 2-5

The SPU Does the Computing 2-5
The Hard Disk Stores Data 2-5
The Keyboard Enters Text . . 2-5
The Pointing Device (Mouse) Points and Selects 2-6
The Screen Displays Output . . . 2-6
The LAN Connects to the Network . 2- 6
Other Pointing Devices 2-7

The X Server Controls Communication 2-7
The Window Manager Controls Your Windows 2-7

The Window and Root Menus 2- 7

Contents-1

Icons
Window Frame Decoration

Application Programs Run in Your X Environment
Window-Smart Programs Are Called Clients
Terminal-Based Programs Must Be Fooled . . .

The Distributed Computing Environment
Workstations Provide Local and Remote Processing .
Application Servers Handle Process-Intensive Applications
File Servers Supply Data Storage . ~
Print Servers Control the Printers.
Graphics Station for Specialized Graphics Applications
Multi-Vendor Communications

Where to Go Next

3. Using the X Window System
Starting the X Window System

Command-Line Options for x11start .
Client Options
Server Options
Examples

Starting X on a Multi-Seat System
Starting Seat 0
Starting Seat 1 . .'.

What to Expect When X Starts
The Server Creates the Root Window
A Terminal Window Appears on the Root Window

What to Do If XII Doesn't Start
Working With Windows

Which Mouse Button Does What
The Anatomy of an mwm Window Frame
Activating a Window
Displaying and Selecting from the Window Menu

U sing a Sticky Window Menu
U sing a Pulldown Window Menu
Using the Keyboard to Display the Window Menu
Window Manager Selections . . .

Moving a Window around the Screen
Changing the Size of a Window

Contents-2

2-8
2-10
2-10
2-10
2-10
2-12
2-13
2-14
2-14
2-15
2-16
2-16
2-17

3-1
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-4
3-6
3-7
3-8
3-9

3-10
3-11
3-11
3-12
3-12
3-12
3-13
3-14

Raising a Window to the Top of the Window Stack
Iconifying a Window
Turning an Icon Back into a Window
More Work with Icons

Displaying and Selecting from an Icon's Menu
Moving Icons around the Screen

Displaying and Selecting from the Root Menu
Exiting From the X Window System

Stopping Application Programs
Following the Program's Normal Exit Procedure
Closing the Window

Stopping the Window System
What Next

4. Running from the Command Line
Meeting the XII Clients

What the XII Clients Do

3-16
3-18
3-20
3-21
3-21
3-21
3-22
3-23
3-24
3-24
3-24
3-24
3-25

4-2
4-2

Specifying the General Syntax for Command-Line Starts 4-4
Specifying the Syntax 4-5
Choosing Background Processing 4-5

Starting Programs 4-6
Starting Local Clients . . 4-6
Starting Local Non-Clients 4-6
Starting Remote Clients . 4-7

Gaining Remote Access 4-7
Starting the Client 4-8
Selecting the Display 4-8
Examples of Starting Remote Clients 4-9

Example 1: Logging In to a Remote Host the Wrong Way 4-9
Example 2: Logging In before Running the Client in

Background 4-9
Example 3: Using a Remote Shell to Start a Client . 4-10

Starting Remote Non-Clients 4-10
Example 1: Logging In to a Remote Host before Running the

Non-Client 4-11
Example 2: Starting a Window That Starts a Remote

Non-Client 4-11
Example 3: Starting a Remote Non-Client Window . 4-12

Contents-3

Stopping Programs . .
Stopping Clients
Stopping Non-Clients
Killing Programs That Won't Stop

Other Ways to Stop a Program
Killing the Program's Process

Terminal Emulation Clients
Emulating an HP Terminal with the 'hpterm' Client.

Syntax
Using 'hpterm' Terminal Window Softkeys
Coloring 'hpterm' Scrollbars

Emulating a DEC or Tektronix Terminal.
Syntax
Using 'xterm' Scroll Features ..
Using 'xterm' Menus

Special Terminal Emulator Options
Making a Login Window
Cutting and Pasting with the Mouse

To cut and paste using 'hpterm'
To cut and paste using 'xterm'

Scrollbars
Window Titles and Icon Names

Telling Times with 'xclock'
Syntax
Some 'xclock' Options . .

Marking the Half Hours
Selecting the Clock Format .
Updating the Time

Examples
Viewing System Load with 'xload'

Syntax and Options .
Some 'xload' Options

Updating the Load
Scaling the Histogram Graph .

Example
Working with Common Client Options

Color Options
Available Client Color Options

Contents-4

4-12
4-12
4-13
4-13
4-13
4-13
4-14
4-14
4-15
4-15
4-16
4-16
4-16
4-16
4-17
4-17
4-17
4-17
4-18
4-18
4-19
4-20
4-20
4-20
4-21
4-21
4-21
4-21
4-22
4-22
4-22
4-23
4-23
4-23
4-23
4-24
4-24
4-24

Using Hexadecimal Color Values on the Command Line 4-25
Examples 4-25

Specifying Size and Location on the Command Line 4-26
The Syntax of the '-geometry' Option 4-26
Placing Clients on the Root Window 4-27
Example. 4-28

Specifying the Display on the Command Line . 4-28
The Syntax for the '-display' Option . . 4-28
Example. 4-29

Specifying the Font in the Command Line 4-29
Working with Fonts 4-29
Example. . . 4-30

Where to Go Next 4-30

5. Customizing Your Local X Environment
Before You Begin Customizing

How to Begin Customizing
Making Backup Copies of Your Work
Making Incremental Changes .
Choosing a Text Editor

Where to Begin Customizing . .
Customizing the Colors of Clients

Copying 'sys.Xdefaults' to '.Xdefaults' .
Changing Client Colors

Determining Which Elements to Color
Syntax
Examples

What Colors Are Available
Where to Find the Available Color Names

Determining Where to Color Your Environment
Coloring a Single Instance of a Client . . .
Coloring Windows that Start Automatically
Coloring Windows that Start from Menus
Coloring 'hpterm' Softkeys and Scrollbars

Changing the Clients that Start When You Start X
Copying 'sys.x11start' to '.x11start' .
Viewing XII Start Error Messages
Starting a Different Window Manager

5-1
5-2
5-2
5-2
5-2
5-3
5-3
5-4
5-4
5-5
5-6
5-6
5-7
5-8
5-9
5-9
5-9

5-10
5-10
5-11
5-11
5-12
5-12

Contents-5

Starting Programs Automatically .
Syntax and Examples
Starting Clients.
Starting Non-Clients
Discovering Your Options

Starting XII at Login
Modifying Login Files

Finding Out Which Shell You Use
Edi ting the File.
Viewing the Result of Your Edit

Using the 'SAM' Program
Creating Custom Bitmaps with 'bitmap' .

Syntax and Options .
Using 'bitmap'
Examples

Creating an Icon Image
Creating Root Window Tiles
Creating Custom Cursors and Masks

Customizing the Root Window with 'xsetroot'
Syntax and Options
Examples

Changing the Root Window Tile Pattern
Changing the Root Window Cursor

Working with Fonts
What Fonts are Available? .
Specifying a Font . .

Font Characteristics
The 'fonts.dir' File
Font Aliases . . .
Changing the Alias Search Path

Adding or Deleting Fonts
Choosing Where to Specify a Font

Making All Instances of a Client Have the Same Font
Specifying the Font of a Window that Starts Automatically
Specifying the Font of a Window that Starts from a Menu

Displaying a Font with 'xfd'
Syntax and Options . .
Using 'xfd'

Contents·6

5-13
5-13
5-13
5-14
5-15
5-17
5-18
5-18
5-18
5-19
5-20
5-20
5-20
5-21
5-25
5-25
5-26
5-27
5-30
5-30
5-31
5-31
5-31
5-32
5-32
5-33
5-33
5-35
5-36
5-37
5-38
5-39
5-39
5-39
5-39
5-40
5-40
5-41

Example. 5-42
Using Remote Hosts. 5-44

Gaining Access to Remote Hosts 5-44
Setting Up a Login on a Remote Host . 5-44
Setting Up an 'XO.hosts' File 5-45
Preparing a '.rhosts' File. 5-45

Adding and Deleting Hosts with 'xhost' 5-46
Syntax and Options 5-46
Exam pIe 5-47

Starting Programs on a Remote Host 5-48
Starting a Remote Program when you start XII 5-48
Starting a Remote Program from a Menu 5-49
Example. . . 5-49

Where To Go Next 5-50

6. Managing Windows
Clients That Help You Manage Windows 6-2

Resetting Environment Variables with 'resize' 6-2
When to Use 'resize' 6-2
Syntax and Options 6-2
Example 6-3

Repainting the Screen with 'refresh' . 6-4
When to Use 'xrefresh' 6-4
Syntax and Options 6-4
Example 6-5

Getting Window Information with 'xwininfo' . 6-5
Syntax and Options 6-5
Example 6-6

Managing Windows with the OSF /Motif Window Manager.. 6-7
When to Use 'mwm'. . 6-7
Syntax and Options 6-7
Example 6-8

Managing Windows with Other Window Managers 6-8
Managing the General Appearance of'Window Frames . 6-8

Coloring Window Frames 6-10
Coloring Individual Frame Elements 6-10
Example. 6-11

Changing the Tiling of Window Frames With Pixmaps 6-12

Contents-7

Frame Resources For Monochrome Displays
Specifying a Different Font for the Window Manager
The Syntax for Declaring Resources

The Syntax for the General Appearance of Elements
The Syntax for Window Frame Elements of Particular

Objects
Working with Icons

Studying Icon Anatomy
The Label
The Image

Manipulating Icons .
Operating on Icons
Starting Clients as Icons

Controlling Icon Placement .
Changing Screen Placement
The Syntax for Icon Placement Resources

Controlling Icon Appearance and Behavior
Selecting Icon Decoration
Sizing Icons
U sing Custom Pixmaps
The Syntax for Resources that Control Icon Appearance

Coloring Icons by Client Class
Coloring leon Elements Individually . .
Changing the Tile of Icon Images . . .
The Syntax for Icon Coloring Resources

U sing the Icon Box to Hold Icons
Specifying the Icon Box
Controlling the Appearance of Icon Bo~es
The Icon Box Window Menu . .
Controlling Icons in the Icon Bpx

Managing Window Manager Menus .
Default Menus
Modifying Menu Selections and Their Functions

Menu Syntax
Modjfying Selections
Modifying Functions
Menu Titles
Menu Selections

Contents-8

6-14
6-15
6-16
6-16

6-16
6-17
6-17
6-18
6-18
6-19
6-20
6-20
6-21
6-21
6-22
6-22
6-23
6-23
6-24
6-25
6-26
6-26
6-27
6-27
6-28
6-29
6-29
6-30
6-30
6-32
6-32
6-34
6-34
6-34
6-35
6,.39
6-39

Mnemonics and Accelerators 6-39
Changing the Menu Associated with the Window Menu

Button . . . 6-39
Making New Menus . . . 6-40

U sing the Mouse 6-41
Default Button Bindings 6-42
Modifying Button Bindings and Their Functions 6-43

Button Binding Syntax 6-43
Modifying Button Bindings 6-44
Making a New Button Binding Set 6-45
Modifying Button Click Timing. 6-45

Using the Keyboard 6-46
Default Key Bindings 6-46
Modifying Keyboard Bindings and Their Functions 6-48

Keyboard Binding Syntax 6-48
Modifying Keyboard Bindings 6-49
Making a New Keyboard Binding Set 6-49

Customizing the Windows Frames. . . . 6-50
Adding or Removing Frame Elements 6-50
The Syntax for the 'clientDecoration' and

'transientDecoration' Resources 6-51
Controlling Window Size and Placement . . . 6-54

Refining Control with Window Manager Resources 6-54
The Syntax for Size and Position Refinement Resources 6-56

Controlling Resources with Focus Policies 6-57
Valid Focus Policies 6-58
The Syntax of Focus Policy Resources 6-58

Matting Clients 6-59
Coloring Individual Matte Elements 6-59
Changing the Tile of Mattes 6-60
The Syntax for Matte Resources 6-61

Switching Between Default and Custom Behavior . 6-62
What's Next 6-63

Contents-9

7. Customizing Special X Environments
Using Custom Screen Configurations 7-2

The Default Screen Configuration File . 7-2
Creating a Custom 'X*screens' File 7-2

Choosing a Screen Mode 7-3
Syntax for 'X*screens' File Lines 7-4
Determining the Number of Screen Devices 7-5
Mouse Tracking with Multiple Screen Devices 7-5
Making a Device Driver File 7-5
Examples 7-6

Defining Your Display 7-8
Specifying a Display with 'x11start' 7-8
Finding the DISPLAY Variable . . 7-9
Resetting the DISPLAY Variable . 7-9

Making 'X* .hosts' Files for Special Configurations. 7-10
U sing Special Input Devices 7 -10

The Default 'XOdevices' File 7-11
How the Server Chooses the Default Keyboard and Pointer. 7-11
Creating a Custom 'X*devices' File 7-12

Syntax 7 -13
The Syntax for Device Type and Relative Position 7 -13
The Syntax for Device File Name 7-14
The Syntax for Reconfiguring the Path to Device Files.. 7 -14

Selecting Values for 'X*devices' Files 7-15
Configuring an Output-Only X Window System 7-16
Examples 7-16

Changing Mouse Button Actions 7-18
Changing Mouse Button Mapping with 'xmodmap' 7-19

Going Mouseless with the 'X*pointerkeys' File . . 7-20
Configuring 'X*devices' for Mouseless Operation 7-21
The Default Valuesfor the 'X*pointerkeys' File 7-21
Creating a Custom 'X*pointerkeys' File 7-21

Syntax 7 -22
Assigning Mouse Functions to Keyboard Keys 7-22
Examples 7-26
Specifying Pointer Keys 7-27
Examples 7-29

Customizing Keyboard Input 7-31

Contents-10

Modifying Modifier Key Bindings with 'xmodmap'
Syntax and Options
Specifying Key Remapping Expressions
Examples

Printing a Key Map
Creating a Custom Color Database with 'rgb'
Changing Your Preferences with 'xset'

Syntax and Options
Examples

Compiling Bitmap Distribution Fonts into Server Natural Format
Syntax and Options
Example

Using 'xrdb' to Configure the X Server
How Applications Get their Attributes .

Where to Find Attributes
Class Struggle and Individual Identity
The Order of Precedence Among Attributes
Naming a Client

Syntax and Options
Examples

Using Native Language Input/Output
Configuring 'hpterm' Windows for NL I/O
Specifying an NL I/O Font .

Where to Go Next

8. Printing and Screen Dumps
Making and Displaying Screen Dumps

Making a Screen Dump with 'xwd'
Syntax and Options
Example 1: Selecting a Window with the Pointer
Example 2: Selecting a Window with a Name

Displaying a Stored Screen Dump with 'xwud'
Syntax and Options
Example

Printing Screen Dumps
Printing Screen Dumps with 'xpr' .

Syntax and Options
Example

7-31
7-31
7-32
7-33
7-35
7-35
7-37
7-37
7-40
7-41
7-42
7-43
7-43
7-44
7-44
7-45
7-46
7-46
7-47
7-49
7-50
7-50
7-51
7-51

8-1
8-1
8-2
8-2
8-3
8-3
8-3
8-4
8-4
8-4
8-5
8-7

Contents-11

Moving and Resizing the Image on the Paper
Sizing Options . .
Location Options
Orientation Options

Printing Multiple Images on One Page .
Printing Color Images

Printing Color Images on a PaintJet Printer
Printing Color Images on a LaserJet Printer

Where To Go Next

9. Using Starbase on XII
U sing the X*screens File .

Monitor Type
Operating Modes . .

Image and Overlay Planes
Server Operating Modes . .
Example 1: Image Mode.
Example 2: Overlay Mode .
Example 3: Stacked Mode
Example 4: Combined Mode

Double Buffering
Example 1: Image Mode ..
Example 2: Stacked Mode .
Example 3: Combined Mode

Screen Depth
Exalnple 1: Image Mode ..
Example 2: Combined Mode

Starting the X11 Server
Window-Smart and Window-Naive Programs

Is My Application Window-Smart or Window-Naive?
Running Window-Smart Programs
Running Window-Naive Programs
Creating a Window with 'xwcreate'

When to Use 'xwcreate'
Syntax and Options

Destroying a Window with 'xwdestroy'
When to Use 'xwdestroy'
Syntax and Options

Contents-12

8-7
8-7
8-7
8-8
8-8
8-8
8-8
8-8
8-9

9-1
9-2
9-3
9-3
9-4
9-4
9-5
9-5
9-5
9-6
9-6
9-6
9-6
9-6
9-7
9-7
9-7
9-8
9-8
9-8
9-9
9-9

9-10
9-10
9-11
9-11
9-11

A.

Destroying a Window with 'gwindstop' 9-11
When to Use 'gwindstop' .•.. 9-12
Syntax and Options . . • . . 9-12

Running Star base in Raw Mode 9-12
Using Transparent Windows . . . 9-13

Creating a Transparent Window with 'xseethru' 9-13
When to Use 'xseethru' 9-13
Syntax and Options 9-13
Example 9-13

Creating a Transparent Window with 'xsetroot'. . 9-13
When to Use 'xsetroot' 9-13
Syntax and Options 9-14
Example. 9-14

Creating a Transparent Background Color 9-14
Conversion Utilities 9-14

Converting Starbase Format to 'xwd' Format using 'sb2xwd'. 9-14
When to Use 'sb2xwd' 9-14
Syntax and Options 9-15
Example. .. 9-15

Converting 'xwd' Format to Starbase Format using 'xwd2sb' 9-15
When to Use 'xwd2sb' . 9-15
Syntax and Options 9-15
Example 9-15

Using Other Window Managers
Using 'hpwm'

Starting 'hpwm'
Differences Between 'hpwm' and 'mwm'
Menus.
Icons
Resources

Using 'uwm'
Starting 'uwm'
Configuring 'uwm'

A-2
A-2
A-2
A-2
A-3
A-3
A-4
A-5
A-5

Contents-13

B. Reference Information

Glossary

Index

Contents-14

1
How to Improve Your X Life

Welcome to graphical user interfaces ("windows") and to the X Window
System version 11 (XII or X) in particular. In this chapter you'll find out
how this manual is organized and some of the conventions it uses. You'll also
find some tips to make learning about XII easier and to improve your X life
thereafter.

How This Manual Is Organized
This manual is organized so that the less technical information comes first.

If you're new to computers, new to HP-UX, or have had some window
experience-but never this much control of your screen environment-you'll
want to read this chapter and chapters 2 and 3. You'll also find the glossary
and the index helpful.

Chapter 1

Chapter 2

Chapter 3

Introduces this manual and gives some tips on HP-UX and
networking.

Explains the window environment and sets the stage for
chapter 3.

Provides a beginner-level introduction to using the X Window
System.

If you're a system administrator or programmer-someone familiar with
computers and how they operate-you'll probably be more interested in the
more technical information in the second half of this manual.

Chapter 4

Chapter 5

Explains how to run programs from the command line.

Discusses customizing the X environment to suit your personal
needs or the needs of the users who use your system.

How to Improve Your X Life 1-1

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Appendix A

Reference

Offers a detailed explanation of the OSF /Motif Window
Manager.

Provides information about customizing special X
environments.

Discusses printing and screen dumping.

Discusses the use of Starbase graphics.

Discusses other window managers.

Contains "man" pages-the definitive description-for current
X clients.

But please, System Administrator, don't just skim the man pages, tweak the
sys .Xdefaults and system.mwmrc files, and then bury this manual on a
bookshelf. Your users, the people who depend upon you for support, could use
this manual to make life a little easier for themselves-and for you. Make it
available to them and encourage them to read it. As they become self-sufficient
within their window environment, your support tasks become easier.

Ultimately, whether you're a new user or an experienced user, the purpose of
this manual is to improve your X life.

1-2 How to Improve Your X Life

Conventions
As you read this manual, notice the following typographical conventions:

Table 1 .. 1. Typographical Conventions

Hyou see ... It means ...

comput er text This text is displayed by the computer or text that you type
exactly as shown. For example,

italic text

login:

is a login prompt displayed by the computer.

A book title, emphasized text, Or text that you supply. For
example,

hpterm -fg color

means you type "hpterm -fg" followed by a color you choose.

o You press the corresponding key on the keyboard. For example,

(CTRL) (Left Shift) (Reset)

means you hold down the (CTRL) key, the (Left Shift) key, and the
(ResElt I all at tlle same time.

[] An optional parameter that can be left off if you don"t need that
functionality. For example,

xload [-rv] It;

: means that you must. type "xIoad" but don't have to type "-rv".

-£ } ,: A list containing mutually exclusive optional parameters. For

bold text

example;

x'se't r {on }
off

means that option r can be set to' either on or o,ff', but not both .

. The definition. of this term follows. Additionally, the term is defined
in the glossary.

How to Improve Your X Li'e 1 .. 3

Also, you can use the X Window System with either a two- or a three-button
mouse by observing the following conventions:

Table 1·2. Mouse Buttons and Their Locations

If you see ... On a 2-button mouse press ... On a 3-button mouse press ...

Button 1 The left button. The left button.

Button 2 Both buttons simultaneously The middle button.

Button 3 The right button. The right button.

System Administrators, these are the default mouse button settings and can be
changed as described in chapter 7.

Running HP-UX: Some Tips
If you are new to HP-UX and to the X Window System, take heart: You're not
alone. A wide variety of users, many just like yourself, are currently learning
HP-UX and XlI. The next several paragraphs provide you with information
and tools to facilitate the initial stages of learning.

What Is HP-UX and the X Window System?

HP-UX is Hewlett-Packard's implementation of the UNIX operating system.
The operating system is the software that controls the operation of the
computer system. HP-UX is a multi-user, multi-tasking environment. A
multi-user environment means more than one user can be on the system at the
same time. A multi-tasking environment means that each of those users can
run more than one program at a time.

The X Window System is a window environment. It turns your screen into a
"root window" or "desktop" on which you can display smaller windows, each
one the equivalent of a full-sized display terminal. Within the Xll environment
you can run multiple tasks, viewing their progress in separate windows.

1·4 How to Improve Your X Life

Why Background Processing Is Important

Your programs can run as either foreground or background processes. In any
XII terminal widow, you can only run one program at a time as a foreground
process, but you can run many programs as background processes. To run a
program as a background process, add an ampersand (&) to the end of the
command line that starts the program. The ampersand tells the system that
the program should be run in the background. This leaves the foreground free
for you to issue more commands.

Take, for example, the following command:

xclock &

This command starts a clock. The & tells the system to display the clock,
but as a background process, so you can use the foreground to enter more
commands. Without the &, the clock would still display, but in the foreground.
The window from which you issued the command would ignore everything
else, including your keyboard commands, as long as the clock remained
the foreground process. This could prove inconvenient, even to inveterate
clock-watchers.

If you forget an &, you will need to stop that program to regain control of the
foreground -a task not always easy to accomplish (see either "Exiting from the
X Window System" in chapter 3 or "Stopping Programs" in chapter 4).

One last note on foreground and background: Don't confuse foreground and
background processing with foreground and background color. The foreground
and background that you process are not the same foreground and background
that you color. Foreground and background processes are activities of the
computer; the foreground and background colors are graphical elements that
display on the screen.

Case Sensitivity and Other Typographical Tips

HP-UX distinguishes between uppercase and lowercase letters. A file named
.xdefaults is not the same file as .Xdefaults. Use uppercase letters where
indicated and only where indicated.

How to Improve. Your X Life 1-5

Also, the number "I" (one) looks like a lowercase "1" (el) to our human eyes.
The system, however, can readily distinguish the difference and often seems to
do so with a vengeance.

Don't confuse the "0" (zero) with the upper case "0" (oh) for the same reason.

White space (extra spaces or tabs) at the end of a command line in a text
file sometimes alters the meaning of the command. Files such as .rhosts are
especially vulnerable. After modifying a file, check for unwanted white space.

And finally, watch your spelling.

Working with HP-UX Manuals

HP-UX manuals typically have a section devoted to reference information. This
section contains "man" (manual) pages that provide specific information about
a command, function, or program. The man page is the most definitive source
of information. You will find man pages in the reference section at the back of
this manual.

Logging In to HP-UX

Most HP- UX systems require you to log into a system before you gain access to
the resources available on that system. The administrator of the system must
provide you with a login account. When you have a login, you will be able to
log into that system by providing your login name and your personal password.
When you are logged in, you may use the resources available such as the X
Window System.

Note that on some systems the system administrator may have configured your
login process so that you automatically start your X environment.

For More Information

Several beginner's guides come with your computer system.

1-6 How to Improve Your X Life

Table 1-3. Beginner's Guides

To learn about ... Look through this guide ... HP Part Nmnber

Using the HP-UX operating A Beginner's Guide to HP- UX 98594-90006
system concepts and commands.

U sing shells to increase A Beginner's Guide to Using 98594-90008
performance. Shells

Editing commands for the vi A Beginner's Guide to Text 98594-90010
editor. Editing

Customizing your own X A Beginner's Guide to the X 98594-90002
Window System environment. Window System

If you are new to the system, taking the time to study these guides will help
clarify questions you may have.

There is also a great deal of information available about the HP-UX operating
system in the HP- UX Reference volumes that accompany the operating system.

Additionally, information about programming in the X Window System
environment is available in the following manuals:

Table 1-4. Reference Manuals

To learn about ... Look through this manual ... HP Part Number

Writing and using widgets in Programming with the Xt 98794-90008
application programs. Intrinsics

HP OSF /Motif Programmer's 98794-90005
Guide

Fortran Bindings and Native Programming with Xlib 98794-90002
Language I/O systems.

Writing graphics programs for X. Programming with Xlib 98794-90002

These manuals contain information about the HP OSF /Motif user
environment .

• HP aSP/Motif Programmer's Guide.

How to Improve Your X Life 1-7

• HP OSF /Motif Programmer's Reference.

• HP OSF /Motif Style Guide.

Finally, depending on your needs, the following books about the X Window
System might prove useful:

• Introduction to the X Window System by Oliver Jones. Prentice Hall,
Englewood Cliffs, NJ:1989.

• Xlib Programming Manual for Version 11 by Adrian Nye. O'Reilly and
Associates, Newton, MA:1988.

• Xlib Reference Manual for Version 11 edited by Adrian Nye. O'Reilly and
Associates, Newton, MA:1988.

• X Window System User's Guide by Tim O'Reilly, Valerie Quercia, and Linda
Lamb. O'Reilly and Associates, Newton, MA:1988.

• X Window Systems Programming and Applications with Xt by Douglas A.
Young. Prentice Hall, Englewook Cliffs, NJ:1989.

Where to Go Next
N ow that you've finished these preliminaries, you have a choice. If you feel
comfortable with (or aren't interested in an explanation of) graphical user
interfaces, skip chapter 2 and read chapter 3 on how to use the X Window
System.

If you've had some experience with graphical user interfaces and the X Window
System in particular, you might want to skip all the way to chapters 4 and 5 to
find out how to run XII clients and customize your XII environment to your
individual needs.

1-8 How to Improve Your X Life

Understanding Window Systems

This chapter is written for new users. If you're not familiar with HP-UX or
window environments, this chapter's for you. It describes the following key
elements:

• Basic window concepts.

• A typical X Window System environment.

• An example of a distributed computing environment.

This chapter demonstrates the power and the flexibility of the X Window
System.

What Is the X Window System?

2

The X Window System is a graphical user interface, a way of communicating
with your computer using visual images (graphics). You can better understand
the importance of the X Window System and why its possibilities are so
exciting if you compare it to the "traditional" user interface, the command-line
prompt.

In contrast to the austerity of the command-line prompt, the X Window
System offers a visually rich connection to your computer. This connection,
the user interface, is characterized by easily recognizable graphical features:
windows, selection menus, and icons.

XII surrounds your interaction with the computer system in a visual
metaphor more intuitively meaningful-especially to novice users-than
the command-line prompt with its often esoteric commands and obscure
parameters, for example, "pushing" a button. XII provides you with a friendly,
easy-to-use work environment.

Understanding Window Systems 2-1

X11 Is Based on the Server-Client Interaction Model

The X Window System is based on a server-client interaction model.

The server is really what you "start" when you "start XI1." The server
controls all access to input devices (typically a mouse and keyboard) and
all access to output devices (typically a display screen). You can vislJ.alize
its position in the scheme of things by thinking of it as standing between the
programs you run on your system and your system's input and display devices.

Display LAN Clients Terminal-b~sed
Applications

Terminal-based
Program

Terminal-based
Program

Figure 2-1. The Server Controls Display Access

A client is any program written especially to run with the server. Another way
of looking at it is to view the client as "window smart." Clients know about
windows and how to make use of them. All other programs are non-clients,
programs that don't know how to make use of windows.

2-2 Understanding Window Systems

Multi-Tasking Makes X11 a Powerful Tool

Part of the X Window System's power comes from the computer system's
multi-tasking ability. Multi-tasking is the ability to execute several programs
simultaneously. Each program is a separate task (process). The X Window
System brings multi-tasking out of the realm of the power user and into
the hands of the novice user in search of increased efficiency. In your XII
environment, you run each program in a separate window as a separate process.
Windows may overlap on the screen, but their processes don't interfere with
each other.

For example, you could have the system recalculate a large spreadsheet in one
window while you s.hift 'your attention between editing a monthly report in a
second window and answering your electronic mail in a third. Each program
normally has a main window for visual interaction, and each window has its
own input and output.

You focus your attention on a particular window by moving the mouse pointer
into that window and pressing button 1. The window thus pointed to becomes
the active window. While you focus on one window, other windows continue
running unattended or wait for your input.

Multi-tasking is possible in part because of the way the computer system
divides all processes into foreground processes and background processes.
Background processes are the ones that run unattended or wait until they
get your input. You can have as many background processes running in a
window as you like. A foreground process is the process that has the window's
attention at the moment. You can have only one foreground process running in
each window.

The ampersand (&) at the end of a command line initiates background
processing.

X Allows Both Local and Remote Access

Any computing environment allows you local access, the ability to run
a program on the computer in front of which you're sitting. Networked
computing environments also allow you remote access to programs, the ability
to run a program on a computer other than the one at which you're sitting.

Understanding Window Systems 2-3

U sing the X Window System, you can run programs both locally and remotely
at the same time. You also have greater control over where the output displays.
If you wish, you can run a program locally and display the output on the
screen of a remote system; or the opposite, run a program remotely and display
the output in a window on your screen; or run a program remotely and have it
display on yet another remote screen.

The X Window System Allows Multi-Vendor Networking

A final feature of Xll worth mentioning is the X Window System's acceptance
as an industry standard for UNIX operating system network protocol. Since
all X Window System hardware and software vendors communicate using
the X protocol, programs from different vendors can be run remotely and
be viewed on your local system. Thus, computer networks composed of
hardware and software from multiple vendors, instead of being a "nightmare
of incompatibility," become powerful resources for specialized applications,
allowing the user to select the best hardware and software for the application
without compromising performance for compatibility.

The Parts of a Typical X Window System
Your personal window environment can be relatively simple or rather elaborate.
The details depend on your personal computing needs, the programs you use,
and how you customize three X Window System configuration files. However,
all X Window System environments have the following features in common:

• Computer hardware (a system) on which to run the software.

• An X server program to control communication between the display and
client programs.

• A window manager to control the display's window environment.

• Application programs to provide useful services.

2-4 Understanding Window Systems

The Computer Hardware System

The hardware system consists of several components:

• System Processing Unit (SPU).

• Hard disk.

• Keyboard.

• Mouse, or other pointing device.

• Display screen.

• Connection to a Local Area Network (LAN).

The SPU Does the Computing

The System Processing Unit or SPU is the "brains" of the computer. The SPU
contains the logic circuitry, which is driven by the software and performs all the
processing that takes place. The SPU of your system runs the X server that
provides your window environment, takes care of foreground and background
processing, and controls local and remote accessing of your system's resources.
U sing X, you can run programs that are stored on your own hard disk (local
processing) or that are stored on someone else's hard disk using their SPU
(remote processing).

The Hard Disk Stores Data

The hard disk stores programs and data files. No processing takes place on the
hard disk, only storage. Some HP 9000 Series 300 and Series 800 configurations
are called diskless clusters because groups of users share the same hard disk.

The Keyboard Enters Text

The keyboard is an input device, a device used to type information into the
computer. This information could be the text of a letter or the next command
that the computer should execute, depending on whether you type the text into
a file or on the command line.

Although the keyboard is frequently used in conjunction with a mouse, it does
not need to be. You can configure your XII environment so that you can use
the keyboard for both text entry (its usual purpose) and for pointing and

Understanding Window Systems 2-5

selecting (the mouse's usual purpose). For example, this mouseless operation
would be beneficial in any situation where desk space was at a premium.

The Pointing Device (Mouse) Points and Selects

The keyboard enters characters; a pointing device points and selects. A mouse
is the most used pointing device. Sliding the mouse on your desktop moves
the pointer, the current screen location of the mouse, on the screen. Using the
mouse, you can point to an object on the screen, for instance a window, and
select an action to perform, such as resizing. Selection is made by pressing
button I on the mouse. As mentioned, however, mouse movements and button
presses can be associated with keyboard key presses for mouseless operation.

The Screen Displays Output

The principal output device for the X Window System environment is the
display. A typical display consists of one physical screen per mouse and
keyboard. However, depending on the specialized nature of the application, a
display may include as many as four physical screens, all using the same mouse
and keyboard.

The screen is the physical CRT (Cathode Ray Tube) that displays what
you type on the keyboard. The screen also shows you the position of the
pointer and windows, and provides you with visible indications of the status of
executing programs.

Conceptually, the screen becomes the root window when you start the X
Window System. The root window contains all the windows, menus, and icons
that compose the visual elements of your XII environment.

Technically, the screen is known as a bitmapped device because the graphical
elements (windows and icons) that it displays are stored by the computer as
a bitmap, a pattern of bi ts (dots) that can be readily displayed as graphical
images.

The LAN Connects to the Network

The LAN is composed of hardware and software. The hardware part connects
your computer system physically (using a cable) to a network that includes
other computer systems at your site and could encompass other networks

2-6 Understanding Window Systems

at different locations. The LAN enables you to take advantage of remote
processing capabilities of X.

Other POinting Devices

Although the mouse is the most common pointing device, the X Window
System display server (the program that "runs" X on your system) supports
other HP-HIL (Hewlett-Packard Human Interface Link) pointing devices, for
example a digitizer tablet or track ball. References in this manual to mouse
actions apply also to corresponding actions with other HP-HIL pointing
devices.

The X Server Controls Communication

The server is the program that controls the screen, keyboard, and mouse, and
processes all communication requests. The X server is really what funs when
you "run XI1." The server updates the windows on the screen as a client
generates new information or as you enter information through an input device.
All client programs communicate through the server.

Because the server controls communication with the display screen, it is
sometimes called the display server. Either name is correct.

The Window Manager Controls Your Windows

The window manager is your main means of dynamically controlling the
size, shape, state (icon or normal), and location of the windows on your
screen. Several different window managers exist; the window manager for
the Hewlett-Packard implementation of the X Window System is called the
OSF /Motif Window Manager (mvm). The window manager includes:

• menus

• icons

• window frames

The Window and Root Menus

One way that you can control the operation of your window environment is
by choosing an action from a menu. A menu is a indow that contains a list

Understanding Window Systems 2-7

of selections-exactly like a restaurant menu. The window manager has two
menus:

Window menu

Root window
menu

One for each window on your screen. A window menu
controls the particular window to which it is attached.

The menu for the root window. The root menu controls
actions that are generic and refer to no particular window.

The following figure shows a window with the window menu displayed and the
"maximize" selection highlighted.

excellent 5ugge5tion5. I will pa55 them
I

Figure 2-2. The Window Menu with "Maximize" Selected

You can configure your window manager to make life easier for yourself. For
example, you can add a selection to the root menu that enables you to log
onto a remote host and run an application automatically. You can also create
submenus of related activities. One popular submenu is a list of remote hosts
to log onto. Chapter 6 of this manual discusses configuring the OSF /Motif
Window Manager. Appendix A discusses other window managers, hpwm and
uwm, which were used in previous releases of the X Window System.

Icons

2-8 Understanding Window Systems

Because your display will often contain several windows, you may find it
convenient to set aside a window you're not currently using without stopping
the processing in that window. You do this by changing the window into an
icon, a small, easily identifiable graphic symbol that represents the window but
takes little space on the screen.

The contents of an iconified window aren't visible. But you can quickly convert
the icon to its original window representation whenever you wish to use the
window again. Any processing that was occurring in the window as it was
iconified continues as long as it doesn't require additional input from you. You
won't be able to see output or enter input until you change the icon back into a
window.

The figure below shows several icons, each representing a different type of
client.

Figure 2·3. Icons Replace Windows Giving You More Room

Understanding Window Systems 2·9

Window Frame Decoration

The window manager provides a functional frame around each window in
the root window. The frame, sometimes called window decoration, consists
of graphical control devices that enable you to display the window menu,
maximize or iconify the window, or move and resize the window.

Application Programs Run in Your X Environment

An application program is a computer program that performs some useful
function like word processing or data base management. The applications you
run while you use X may be stored on the hard disk attached to your system
or on the hard disk of a remote system. The XII server communicates with
application programs just as easily over the LAN as locally.

You can sort all application programs into two categories:

• Those that know about windows and incorporate windowing behavior into
their own behavior (client programs) .

• Those that don't know about windows and think that they must always be
running on a separate terminal (non-client programs).

Window-Smart Programs Are Called Clients

A client is a program written especially for the X Window System. Clients are
referred to as window-based programs. The window manager that controls the
windows on your screen is a client. The windows themselves are clients. Clients
are "smart" enough to create their own windows if they need to display output.
Note, however, that not all clients create windows. Some clients (like xvininfo
and xmodmap) are content to use an existing terminal emulation window in
which to display their output.

Terminal-Based Programs Must Be Fooled

N on-client programs know nothing about windows. They are designed to
run alone on display screens or "terminals" and are, therefore, referred to
as terminal-based programs. Terminal-based programs must have windows
created for them so that they can run in a window environment. They are thus
"fooled" into operating in the window environment.

2-10 Understanding Window Systems

You can operate terminal-based programs in the X Window System by using
a client program called a terminal emulator to provide a window. You start
the non-client program in that window. The terminal emulator "fools" the
non-client into thinking that it is running on a "real" terminal instead ofa
window imitating a terminal. This has led some people to describe non-client
programs as "window dumb."

The X Window System provides two terminal-emulator clients: hpterm and
xterm. When either is'run, it creates a window to emulate a display terminal.
A terminal-based program runs happily in this window, acting exactly as if
running on a terminal.

The following diagram shows the components of a system running X.

Just got the latest report on !:jour last quarter's
actiyities. Sure looks good to lIIe.

Figure 2-4. Typical Components of an X Window System

Understanding Window Systems 2-11

The Distributed Computing Environment

A Distributed Computing Environment (DCE) is a group of computer systems
joined together into a network. Resources resident on one system are available
to all systems. As mentioned earlier, a system that uses Xll is usually
connected to a LAN. The LAN provides the link to programs that are resident
on physically separate (remote) systems.

Xll really doesn't care where a program is-it simply communicates to the
program via the LAN connection. This structure permits you to operate 8300
and 8800 systems at a strictly local level with all client programs residing
locally, or at a networked level with some programs running at the local level
while others run on remote systems.

In addition, another system on the LAN can run programs that reside on your
8300 or 8800 and direct the visual output to any screen on the network.

A distributed computing environment, in other words, enables the best possible
allocation of processing resources within the existing hardware environment.

The figure below shows a distributed computing environment that provides a
number of resources to users who are connected to the LAN and running X.

2·12 Understanding Window Systems

....
Display

1

~
HP 348

Workstation

~
HP 378

Workstation HP

HP 848
Graphics
Station

LAN

HP 858
App I i cati on

Server

HP 858
File

Server

HP 835
Print
Server

Dot Hatrix

Laser Printer

Typesetter

Figure 2-5. A Typical Distributed Computing Environment

As the figure indicates, if you use a system running XII and connected to
a LAN, you have a multitude of resources available. The following sections
provide a practical example of how the above environment and the resources
contained therein could be used.

Workstations Provide Local and Remote Processing

Two workstations are pictured in the figure, an HP 9000 Series 330 and an an
HP 9000 Series 350.

Both workstations can use clients that reside either locally, on their own hard
disks, or remotely, on the hard disk of another system (for example the Series
850 application server.) The workstations illustrate the capability of a single
system to operate either locally or remotely.

Understanding Window Systems 2-13

Application Servers Handle Process-Intensive Applications

One of the HP 850s shown in the figure is an application server. An
application server is a computer that provides the processing power and
memory necessary to run large, processor-intensive applications.

A typical user of such an application would be Hank, who works for a large
oil company. Hank is currently involved in the search for new oil resources in
Alaska. Many variables are considered in the attempt to locate potential oil
fields. Hank uses a simulation program that mathematically manipulates all of
these variables to produce data that indicates the potential for a certain area.
These computations require a tremendous amount of memory, disk space, and
processor time.

With a distributed computing environment, Hank can sit at his desk and use
his personal workstation to log into the HP 850 application server and enter
the necessary data. The actual simulation program and the necessary data
files reside on the HP 850. Hank runs the simulation using the processing
power of the application server. He has the output directed to a window on his
workstation while he is busy performing tasks locally in other windows until
the necessary simulation information is available.

Hank is only one of many employees to take advantage of the processing power
of the application server. Other employees in the same department or even in a
different building can also log in and use the system.

File Servers Supply Data Storage

The other HP 850 shown in the figure is a file server. A file server is a
computer that controls the storage and retrieval of data from hard disks. A file
server means less storage space is required on an individual's local computer. It
also provides a relatively inexpensive and quick backup facility.

Let's say Alex is a writer who is responsible for the content of several chapters
of a large manual. She works at her desk using an HP 330 as a writer's station
and at any given time is working on one of several different projects that total
10 to 15 megabytes of storage on a hard disk. Using the HP 850 file server,
she could store her files on a master disk drive and check out the chapters she
needs to work on. This leaves a backup of the files on the file server. The file

2-14 Understanding Window Systems

server can thus be used to maintain current backups by transferring updated
files to it on a regular basis.

At any given time, Alex will only have a few chapters stored on her own disk
drive; those chapters she is currently working on. If she finds that she needs a
copy of another chapter that is not currently residing on her disk, she requires
only moments to transfer a copy from the main disk.

Another use for a file server is to serve as a hub for diskless workstations.
You can have a cluster of several diskless workstations connected to a single
hub with a large disk. Each workstation, or node, needs a certain amount
of individual space on the disk, but all nodes can share the system and
application software, eliminating the need for local system storage and thus
saving a considerable amount in overall storage requirements.

Print Servers Control the Printers

The HP 835 shown in the figure has several printers attached to it and acts as
a print server, a computer that controls spooling and other printing operations.
Page formatters and page composition programs reside on the print server and
are invoked with the proper commands. When you need a document printed
using a particular type of printer, you send it to the print server with the
appropriate instructions, and the task is accomplished. This permits a large
number of individuals from anywhere in the distributed computing environment
to efficiently share printer resources.

If Alex needs a copy of a chapter quickly printed for an immediate review, she
instructs the HP 835 to print the chapter using the fast dot-matrix printer. If
she needs a letter-quality copy of a document containing elaborate graphics,
she routes the letter to the laser printer. For those manuals that need to be
typeset, the print server can also drive a typesetter. Alex would again simply
direct the appropriate command to the print server to run the document
through the typesetter.

Understanding Window Systems 2-15

Graphics Station for Specialized Graphics Applications

Certain applications are designed to take advantage of graphics accelerators
in order to speed up the presentation of graphics on the screen. Generally,
engineers working with CAD (Computer-Aided Design) applications are the
major users of graphics accelerators. Hewlett-Packard supports graphics
acceleration with a graphics library called Starbase. The HP 840 shown in the
figure has two high-performance graphics subsystems attached to it. Each
subsystem is powerful enough to run the X Window System while running a
Starbase application.

Anne is an engineer who is working on a project involving the design of a new,
high-speed sailboat hull. The CAD program she uses is very expensive and
requires graphics acceleration to accomplish complex shading. When Anne
wants to work with the program, she can move to the graphics station where
she can use multiple windows provided by X with the CAD program running in
one of the windows.

The graphics station permits a larger number of people to share the expensive
hardware and software resources required by a CAD / CAM station. Tasks
that engineers may have that do not require graphics acceleration can be
accomplished at their desks on a more typical workstation.

Multi-Vendor Communications

Another advantage of DCE is its ability to allow computers manufactured
by different vendors, running different operating systems, to communicate
with each other over the LAN. If you are using a computer made by .
Hewlett-Packard, you can communicate over the LAN directly with a computer
made by Sun, DEC, IBM, or a variety of other manufacturers supporting X, as
long as each is running the X Window System and connected to a LAN using
the Ethernet protocol standard.

The diagram below shows a multi-vendor environment of computers running
different operating systems. Communication over the LAN is a simple task as
long as they are all running XII.

2-16 Understanding Window Systems

HP 9000 HP 9000
850 APOLLO 370 SUN

LAN I
I

I
I

I
I

I
DEC HP 9000 IBM

340

Figure 2-6. Multi-Vendor Communication Is A Benefit of X11 DCE

Where to Go Next
You should continue to chapter 3 to learn how to use your X Window System.
Chapter 4 contains information about running client programs from the
command line, while the chapters following contain information on customizing
your window system environment.

Understanding Window Systems 2-17

3
Using the X Window System

This chapter covers the basics of window operation. It shows you how to use
X once it's been installed on your system. You'll learn how to perform the
following tasks:

• Start the X Window System.

• Create, move, resize, and "shuffle" windows.

• Iconify a window and normalize an icon.

• Display menus and make selections.

• Stop programs and correctly exit your X environment.

Starting the X Window System
Before you start the X Window System, you must be logged in to your
computer system. Log in using your normal procedure.

Note

"
The X Window System can't run on a system that's
already running HP Windows/9000. If you are running HP
Windows/9000, you must exit from that window system before
you start X. (HP Windows/9000 can be installed on your
system; it just can't be running when you start X.)

Your system may be configured to start XII as part of the login procedure. If
so, skip the rest of this section and the next and start reading at "What to
Expect When X Starts."

If your system is not configured to start XII at login, log into the system in
the usual way and type the following command at the command prompt:

Using the X Window System 3-1

xllstart (Return 1
You should start the X Window System just once. With XII running, you
should not execute the xllstart command again. Starting XII and then
starting it again while it is still running may cause undesirable results.

Note, however, that you can restart the window manager and refresh the screen
at any time.

Command-Line Options for x11start

In most cases, you will find it convenient to establish environment options in
configuration files in your home directory. However, if you don't start XII
automatically at login, you can include environment options on the command
line after the xllstart command. The syntax for this is:

xl1start [-clientoptions] -- [{path }/server] [:display] [-options]

Client Options

Client options pass from the xl1start command line to all clients in the
.xllstart file that have a $@ parameter. The options replace the parameter.
This method is most often used to specify a display other than the usual one
on which to display the client. You can, however, use the command-line option
to specify a non-default parameter, such as a different background color.

Server Options

Server options are preceded with a double hyphen (--). If the option
following the double hyphen begins with a slash (/) or a path and a slash, it
starts a server other than the default server. If the option begins with a colon
followed by a digit (:#), it specifies the display number (0 is the default display
number). Additional options specified after the server or display refer to the
specified server or display. See the XSERVER page in the reference section for
more information on server options.

Examples

The examples below illustrate starting the X Window System in different ways.

xtlstart The usual way to start X.

3-2 USing the X Window System

xllstart -bg Blue
xllstart /X2

Gives clients followed by $@ a blue background.
Starts server X2 rather than the default server.

Starting X on a Multi-Seat System

A multi-seat system (a system with more than one display, keyboard, and
mouse) requires modification of two XII configuration files, to allow for more
than one display seat. These files, X*screens and X*devices (where * is the
number of the display), are located in /usr/lib/Xl1. Each seat must have its
own X*screens and X*devices files. If you have a multi-seat system but have
not configured it, see your system installation or configuration manual for more
information. Also see "Defining Your Display" in chapter 7.

Starting Seat 0

To start XII on seat 0 (display 0) of a multi-seat system, log in as usual and
type:

xllstart (Return)

Seat 0 uses the /usr/lib/Xll/XOscreens and /usr/lib/Xl1/XOdevices files
to configure its output and input devices. These files are supplied with the
system, but you must still match them to your hardware configuration.

Starting Seat 1

To start XII on seat I (display I) of a multi-seat system, log in as usual and
type:

xllstart -- : 1 (Return)

Here the - - signifies starting the default server while the : 1 specifies
sending the output to seat 1. Seat I uses the /usr/lib/Xll/Xlscreens and
/usr/lib/Xll/Xldevices files to configure its output and input devices. If
your system has a multi-seat configuration, you must create these configuration
files using the XOscreens and XOdevices files as models.

Using the X Window System 3-3

What to Expect When X Starts

Whether you start the X Window System from the command line or
automatically from a login file, xiistart always executes the same sequence of
steps.

1. If necessary, it adds the path to Xll programs (/usr/bin/Xii) to your PATH
variable.

2. It looks in your home directory for a .xiistart command file to read. If it
doesn't find one, it reads usr/lib/Xii/sys .xiistart instead.

3. It starts xini t, which starts the server and any clients specified in the
.xiistart command file.

4. It looks in your -home directory for a . Xdef aul ts configuration file to read.
If it doesn't find one, it reads /usr/Iib/Xii/sys .Xdefaults instead.

5. It reads the configuration file named by the $ENVIRONMENT variable,
.Xdefaults-hostname if the variable doesn't exist.

You won't notice any effect from issuing the command until the X display
server starts.

The Server Creates the Root Window

When x11start starts the server (the program that controls the operation of
your keyboard, mouse, and display), your screen will turn gray. This means
that the screen has now become the root window, the backdrop or "desktop"
on which the windows and icons of your environment appear. Although you
can completely cover the root window with clients, you can never cover a
client with the root window. The root window is always the backdrop of your
window environment; nothing gets behind it.

In the center of the root window is an hourglass. This is the pointer and marks
the current screen location of the mouse.

A Terminal Window Appears on the Root Window

A short time later the pointer changes to an X, and a terminal window appears
at the top of your display (if you're using the default .xiistart file). This
window is under the control of a window manager. If you use the OSF /Motif
Window Manager (mwm), your window has a three-dimensional frame. This

3-4 Using the X Window System

frame contains window manager controls. (The HP Window manager (hpwm)
also provides a frame; the uwm window manager does not. Refer to appendix A
for additional information about hpwm and uwm.)

I

Figure 3-1. The Default X Environment: 'mwm' and One Window

The window that xllstart creates is an XII client called hpterm and is called
an hpterm window' to distinguish it from other types of window clients. The
window contains a command-line prompt and behaves exactly like the screen
of a standard HP terminal. You can think of this window as "a terminal in a
window."

Move the mouse. The pointer moves on the screen. When the pointer is in the
root window, it has an X shape. However, when you move the pointer to a
terminal window, the pointer changes to an arrowhead (when on the window
frame) or an I (when in the interior of the window).

With the OSF /Motif Window Manager, when you press and release button
1 while the pointer is in a terminal window, the window becomes the active

Using the X Window System 3-5

window. When a window is active, its frame changes color. You'll discover that
you can't type in a terminal window unless the window is active.

The active window is the terminal window where what you type on the
keyboard appears. Your input always goes to the active window.

If there is no active window, what you type is lost.

The program running in the active window decides what to do with your typed
input. Frequently the program will use a text cursor to show where your typed
input will be displayed.

What to Do If X11 Doesn't Start

Table 3·1. Possible X Window System Start Problems

If this happens ... You should do this ...

The message command not found appears. Check your spelling and reenter the start
command.

The root window displays for a moment, Press the [Return) key to bring back your
but then goes blank. original command-line prompt and see

below.

The root window displays, but no pointer Press (CTRL) (Left Shift) (Reset) all at the
appears. same time. This brings your original

command-line prompt back. See below.

The root window and pointer display, but Press and hold button 3. If a menu
no terminal window appears. appears, open a window. Otherwise,

press [CTRl)(Shift)(Reset) and try
restarting X, then see below.

The terminal window displays, but Move the pointer into the window and
what you type doesn't appear after the click (press and release) button 1, then
window's command prompt. type.

If you encounter problems starting XII for the first time, check the following
areas:

.• Check the Xl1 start log in your home directory for clues by typing

3·& Using the X Window System

more .xllstartlog [Return)

• Check that the correct directory is in your PATH statement. If you do not
have an entry for /usr/bin/Xll: ., xllstart will add that entry before
/usr/bin:. in the path. You can be sure that the entry is always there by
adding it to the path yourself. To check the PATH variable, type

env [Return)

• Check that the DISPLAY environment variable is set correctly. If you do not
already have an entry for eithe:r; local:O.O or host:O.O (where host is the
hostname of your system), XII will add it for you when XII starts. You can
add the entry yourself. To check the DISPLAY environment variable, type:

env [Return)

• Check that you have the correct permissions for the .xllstart file in your
home directory. Type:

11 .xllstart ~

The resulting permission should be at least:

-rwx------

• Check the .xllstart file in your home directory for errors. Compare it with
the /usr/lib/Xll/sys.xllstart file.

If none of the above seems to help, or you're not sure how to proceed, see your
system administrator.

Working With Windows

This section explains features of the OSF /Motif Window Manager (mwm). If
you have another window manager, some fea~ures may work differently from
what is described in this manual. Appendix A explains differences between
mwm, hpwm, and uwm window managers.

To check which window manager you are using:

1. Move to your home directory by typing

cd~

Using the X Window System 3· 7

2. Type:

more .X1istart ~

If the system replies "no such file or directory" , type:

more /usr/lib/sys.X11start [Return)

Table 3-2. Which Window Manager Are You Using?

You are using
If you see this line ... this window manager ...

mot OSF /Motif Window Manager

hpwm I: HP Window Manager

UWIQ I: uwm window manager

In the typical X environment, you have two tools to control window operations:

• The mouse .

• The window manager.

For most window operations, you'll use a combination of the window manager
and mouse. (If you lack the space on your desktop, or feel more comfortable
with a keyboard, you can configure your keyboard to take the place of the
mouse.)

Which Mouse Button Does What

The X Window System works with either a two-button mouse or a
three-button mouse. If you have a two-button mouse, you can emulate a
three-button mouse. The following table explains which button is which.

Table 3-3. Which Mouse Button Is Which

To press this ... On a 2-button mouse press ... On a 3-button mouse press ...

Button 1 the left button the left button

Button 2 both buttons the middle button

Button 3 the right button the right button

a-a Using the X Window System

Besides using the mouse to point with, you use the mouse buttons to select an
operation to be performed on the object pointed to. Buttons have the following
actions associated with them:

Press

Click

Double-click

Drag

To hold down a button.

To press and release a button without moving the pointer.

To click a button twice in rapid succession.

To press and hold down a button while moving the pointer.

The Anatomy of an mwm Window Frame

The OSF /Motif Window Manager surrounds each window on the root window
with a functional frame. Positioning the pointer on a part of the frame and
performing a mouse button action will execute the function of that part of the
frame.

~indow Menu Minimize

Promp

Figure 3·2. The Window Manager Surrounds a Window with a Frame

Using the X Window System 3·9

The parts of the rnwrn window manager, their functions, and the required mouse
operations are listed in the following table.

Table 3-4. Window Frame Parts and What They Do

Frame Part Function Mouse Action

Title area Move a window. Press and drag button 1.

Window menu Display a window menu. Press button l.
button

Window menu Select a window menu item. Press and drag button l.
button

Window menu Close a window. Double press button l.
button

Minimize Iconify a window. Press button 1.
button

Maximize Expand window to maximum Press button 1.
button SIze.

Frame border Stretch or shrink a window Press and drag button l.
horizontally, vertically, or
diagonally (in two directions).

Frame and Keyboard focus selection. Press button l.
window

Frame and (On focus selection) Top Press button 1.
window window.

Activating a Window

You make a window active by moving the pointer to any part of the window
and clicking button 1 of the mouse. When a window is active, you can interact
with it.

3-10 Using the X Window System

Displaying and Selecting from the Window Menu

Every window has a window menu. The window menu button of a window is
in the upper left corner of the window frame next to the title bar. You can
display the window menu at any time by pressing button 1 with the mouse
pointer on the window menu button.

r excellent suggestions. I will pass them
rs·1

Figure 3-3. Every Window Has a Window Menu

There are three ways to display and use window menus.

Using a Sticky Window Menu

A sticky menu stays displayed until you make a choice. To display the window
menu as a sticky menu:

1. Position the pointer on the window menu button.

2. Click button 1.

3. Move the pointer to the selection you want to choose.

4. Click button 1 on that selection. The window menu will disappear and the
desired action will take place.

USing the X Window System 3-11

Using a Pulldown Window Menu

To display a window's window menu and make a selection, do the following:

1. Position the pointer on the window menu button.

2. Press and hold down button l.

3. Drag the pointer down the menu to the selection you want to choose.

4. When the selection highlights, release button l.

5. (Move and Size only.) Move the pointer to the desired location or until the
desired size is achieved, then click button 1 to end the operation.

If you change your mind and don't want to make a selection, move the pointer
off the menu area before you release the button 1.

Using the Keyboard to Display the Window Menu

You can also display the window menu by pressing (Left Shift) (ESC). To make a
choice using this method, use the 0 and (!) keys to highlight a selection, then
press (Return). If you don't want to make a selection, press (Left Shift) (ESC) again.

Window Manager Selections

The following table describes the window menu selections.

Table 3-5. The Window Menu Selections

To do this ... Select ...

Restore a window from an icon or after maximizing. Restore

Change the location of a window. Move

Change the width and height of a window. Size

Shrink a window to its icon (graphic representation). Minimize

Enlarge a window to cover the entire root window. Maximize

Send a window to the back or bottom of the window stack, the Lower
position closest to the root window.

Immediately stop the window and make it disappear. Close

3-12 Using the X Window System

You can also use mnemonics and accelerators to select items from the window
menu. An accelerator is a key that selects a menu item without posting
the menu. For example, the accelerator @ill minimizes a window. The
accelerators are shown on the right side of the menu items.

Mnemonics let you select a menu item once the menu has been posted. The
mnemonic for a menu item is indicated by an underlined character in its label.
To select a menu item using its mnemonic, press the unshifted key for the
underlined charcter.

The rest of this chapter explains how you can use the mouse and the window
manager to control the windows in your environment.

Moving a Window around the Screen

You can move any window (except the root window) by doing the following:

1. Position the mouse pointer in the title bar.

2. Grab the title bar by pressing and holding down button l.

3. Drag the pointer. An outline of the window shows you the window's new
location.

4. Position the outline and release button 1 to relocate the window.

USing the X Window System 3-13

+

1~'25..lliJ.1

~~

Figure 3-4. An Outline Shows the Window's Location

You will notice that, along with the window outline, a small location box
displays at the center of the screen. The numbers in this box are the column
and row position of the upper left corner of the actual window (the area inside
the window frame). The measurement is in pixels. Pixels (short for picture
elements) are tiny dots, arranged in rows and columns on the screen, that make
up the displayed images.

As mentioned in the previous section, you can also move a window by choosing
the "Move" selection from the window menu.

Changing the Size of a Window

To change the size of a window, grab the window's frame with the pointer,
drag the frame to the desired size, and then release the frame.

Where you grab the frame determines how the window gets resized. If you grab
the side of the frame, the window stretches or shrinks horizontally. If you grab
the top or bottom of the frame, the window stretches or shrinks vertically. If

3-14 Using the X Window System

you grab the frame by one of the corner pieces, you can expand or contract the
size of the window in two directions at once.

Table 3-6. Where to Grab a Window Frame

H you want to stretch
or shrink the window ... Position the pointer on the ...

vertically from the ...

top top of the frame, above the title bar

bottom bottom of the frame

horizontally from the ...

right right side of the frame

left left side of the frame

diagonally from the ...

bottom left corner frame's lower left corner

top left frame's upper left corner

top right frame's upper right corner

bottom left frame's lower right corner

The pointer changes shape when you're positioned correctly for the grab.

Follow these steps to grab and resize the window:

1. Position the mouse pointer on a part of the window frame.

2. Press and hold button 1.

3. Drag the mouse pointer. An elastic outline represents the new window size.

4. Release button 1 when the elastic outline is the correct size.

Using the X Window System 3-15

I

...

Figure 3-5. An Elastic Outline Shows the Window Size

Although you change a window's size and shape during a resize operation, you
do not change its position. The section of the frame opposite where you grab
always remains in the same location.

As mentioned earlier, you can also resize a window by choosing the "Size"
selection from the window menu. If you choose the "Size" selection, you must
cross the window frame's border with the pointer before the elastic outline
appears.

Raising a Window to the Top of the Window Stack

As you open more and more windows during a work session, your screen will
become cluttered as some windows become obscured under other windows. The
windows appear "stacked" on top of one another.

3-16 USing the X Window System

Figure 3-6. Windows Become Obscured by Other Windows

To raise a window to the top of the stack (front of the screen), position the
pointer on any visible piece of the obscured window and click button 1. This
also makes the window the active window.

Using the X Window System 3-17

Figure 3-7. A Window Is Unobscured by Raising It

An alternative in some situations is to lower the window on top of the stack by
choosing the "Lower" selection from that window menu.

Iconifying a Window

Sometimes raising a window isn't enough to solve the problem of a cluttered
root window. You can save space and bring order to your workspace by
reducing inactive windows to icons-small, easily-recognizable graphic images
that represent full-sized windows. Later, as you need them, you can change the
icons back into full-sized windows.

3-18 Using the X Window System

Figure 3-8. Pressing the Minimize Button Iconifies a Window

Changing a window into an icon is known as iconifying or minimizing the
window. To iconify a window:

1. Move the pointer to the minimize button located in the upper right corner
of the window frame between the title bar and the Maximize button.

2. Press and release button 1.

Immediately after you release button 1, the window is iconified. Successive
icons are placed from left to right in a row along the bottom of the root
window using a grid pattern. This placement is by default and can be changed
if your needs require it.

Using the X Window System 3-19

Figure 3-9. Default Icon Placement Is along the Screen's Bottom

You can also change a window into an icon by choosing the "Minimize"
selection of the window menu as discussed earlier.

Turning an Icon Back into a Window

When you have room on the root window, or simply want to check the progress
of an application runnjng in an iconified window, you can turn the icon back
into a window. Changing an icon into a window is called normalizing or
restoring.

1. Move the pointer to the icon.

2. Double-click button 1 (press and release it twice in rapid succession).

After you double-click on the icon, the window will reappear located at its
previous (pre-iconified) position.

3-20 Using the X Window System

More Work with Icons

Although you can't enter information into an icon, any program running in a
window as it is iconified continues uninterrupted until it either completes or
pauses to await input from you.

Icons allow you to start an application in a window and then collapse the
window into a tiny symbol over in the corner of your screen. There the
program quietly does its work without cluttering up your workspace.

Displaying and Selecting from an Icon's Menu

Although an icon doesn't have a frame like a window, it does have a window
menu that gives you most standard control options. "Size" and "Minimize"
appear on the menu but don't function with iconified windows.

To display an icon's window menu and make a selection:

1. Move the mouse pointer over the icon.

2. Click button 1 to activate the icon and display the menu.

3. Move the mouse pointer to the selection you want.

4. Click button one to make the selection.

To make no selection, move the pointer to the root menu and click button 1.
The icon will stay active until you make another window or icon active.

Moving Icons around the Screen

Although icons appear by default in a row along the bottom of the screen, you
can move them anywhere on the root window.

To move an icon:

1. Move the mouse pointer onto the icon.

2. Press and hold button 1.

3. Drag the pointer to a new location. An outline of the icon shows the current
location.

4. Release button 1.

Using the X Window System 3-21

Displaying and Selecting from the Root Menu

The root window has its own menu called (not surprisingly) the root menu.
You can display the root menu any time the mouse pointer is on the root
window. When the pointer is in the root window, remember, it has an X

shape.

To display and select from the root menu:

1. Position the pointer anywhere in the root window.

2. Press and hold button 3 to display the menu.

3. Drag the pointer down the menu until you have highlighted the desired
selection.

4. Release button 3.

To make no selection, move the pointer off the menu before you release button
3.

Figure 3-10. The Root Menu Provides Screen-Wide Functions

3-22 Using the X Window System

The default selections of the root menu provide you with screen-wide functions
not appropriate for an individual window's window menu.

Table 3·7. What the Root Menu Default Selections Do

To do this ... Choose this selection ...

Make a new 80 x 24 hpt erm terminal window near New Window
center screen.

Display an analog clock in the upper right corner of the Start Clock
root window.

Display a histogram measuring system load (displays Start Load
next to the clock).

Bring the most concealed window to the front of the Shuffle Up
window stack.

Lower the least concealed window to the bottom of the Shuffle Down
window stack.

Blank out then redisplay the screen (useful if video Refresh
images become corrupt).

Restart window manager to see recent configuration Restart
changes.

Exiting From the X Window System
Exiting from the X Window System means stopping the XII display server.
Leaving X places you back at the command prompt you had immediately after
you logged into your system.

Before stopping the X Window System, you must first stop any application
programs you may have running. This ensures that you do not unknowingly
leave any orphaned processes executing. It also ensures that all open files are
properly closed to prevent loss of data.

Using the X Window System 3·23

Caution

I
Stop all application programs before stopping the window
system. If you don't do this, any open files may not be updated
properly. This could result in the loss of valuable data.

Stopping Application Programs

You can stop a program and remove its window in three ways.

Following the Program's Normal Exit Procedure

The best way to exit a program is to use the program's usual "exit" procedure.
This should always be your preferred method for stopping the program. Many
programs have commands or keystrokes that stop them.

If the program is a client and created its own window, the window is removed
when the client stops. If the program is a non-client in a terminal window, the
window remains, and you can stop it when you stop the display server.

Chapter 4 contains more information about stopping programs and what to do
if you have trouble stopping a program.

Closing the Window

You can also stop most applications by closing the window in which the
application is running. To close a window:

1. Position the pointer on the window menu button.

2. Press and hold button 1.

3. Drag the pointer to Close.

4. Release button 1.

Stopping the Window System

After stopping all application programs, stop the window system by holding
down the (CTRL) and (Left Shift) keys, and then pressing the (Reset) key. This
stops the display server, and with it the window system.

3-24 Using the X Window System

What Next
Now that you've experienced the X Window System and learned how to control
your terminal window, you're ready to use X as your working environment.

Chapter 4 contains information about the viewable clients supplied with
the X Window System and how to run them from the command-line of a
window. Chapter 5 describes how you can incorporate these clients into your
environment.

Successive chapters supply increasingly more detailed information about the
OSF /Motif Window Manager and other "non-viewable" clients.

Using the X Window System 3-25

4
Running from the Command Line

You can divide the programs you run in your X environment into two groups:

clients Programs written specifically to take advantage of the
windowing capability of the X Window System. Clients are the
tools you use to work in your X environment.

non-clients Programs written for terminals, not window systems. You
can run a non-client in the X Window System by creating a
terminal emulation window in which to run the non-client.

This manual uses clients to mean "window-smart" applications, non-clients to
mean "terminal-based" applications, and "programs" to refer to both clients
and non-clients.

You will probably start the programs that you use frequently either
automatically, as part of your X environment, or by choosing them from a
menu. However, you can start any client from a command-line prompt.

This chapter discusses the following topics:

• XII clients and what they do.

• Command-line syntax.

• Starting programs from the command line.

• Stopping programs.

• The hpterm terminal emulation client.

• The xterm terminal emulation client.

• The xclock client.

• The xload client.

• Working with common client options.

Running from the Command Line 4-1

• Troubleshooting command-line programs.

Meeting the X 11 Clients
This chapter discusses four clients (hpterm, xterm, xclock, and xload). Other
clients are discussed in the following chapters as the functions they control
are discussed. But to give you an idea of the tools that are available in the X
environment, this section gives you a brief overview of XII clients and client
options.

What the X11 Clients Do

The following tables group the XII clients (somewhat artificially) into
functional categories and give you a brief idea of what the clients do.

Table 4-1. X11 Clients That Initialize and Configure

To do tIus ... Use this client ...

Initialize the X Window System and start the X server. xinit

Start xinit, X, and X clients. xllstart

Alter the modifier-key mappings of a keyboard. xmodrnap

Adjust display preference options. xset

Initialize a new colormap for an X environment. xinitcolormap

Create a color database for X. rgb

Add a new remote host to your system. xhost

Load a window manager's resource configuration into the xrdb
server.

Compile a BDF-formatted font into an X server format. bdftosnf

Create fonts. dir file mkfontdir

4-2 Running from the Command Line

Table 4-2. X11 Clients That Control Window Management

To do this ... Use this client ...

Resize the contents of a window (not the window). resize

Repaint the display screen. xrefresh

Find out information about windows. xwininfo

Provide OSF /Motif Window Manager services. mwm

Provide HP window manager services. hpwm

Provide uwm window manager. uwm

Table 4-3. X11 Clients That Control Graphics Functions

To do this ... Use this client ...

Open a window into a graphICS workstation overlay plane. xseethru

Make a screen dump (pixmap). xwd

Translate an xwd pixmap to Starbase format. xwd2sb

Translate a Starbase pixmap to xwd format. sb2xwd .
Print a screen dump on a PCL-format printer. xpr

Stop multiple Starbase X windows. gwindstop

Create a new X window for Star base. xwcreate

Destroy a Starbase X window. xwdestroy

Display a previously made screen dump. xwud

Running from the Command Line 4-3

Table 4-4. X11 Clients That Provide Viewable Services

To do this ... Use this client ...

Make a window that emulates an HP terminal. hpterm

Make a window that emulates a DEC or Tektronix terminal. xterm

Display a clock telling the system time. xclock

Display a histogram telling the system load. xload

Make a bitmap for a cursor, icon, or root window tile. bitmap

Display the characters of a particular X font. xfd

Set the color and appearance of the root window. xsetroot

If your interest is in running applications in the X environment, you probably
won't ever use some of the clients listed above. If your primary interest is
in programming, graphics, or the more technical aspects of environmental
control, chapters 6 through 8 and the man pages are your definitive source of
information.

The following clients do not require X to be running:

• rgb

• xwd2sb

• sb2xwd

• xpr

• bdftosnf

• mkfontdir

Specifying the General Syntax for Command-Line Starts

Starting clients from the command line of a terminal window gives you a way
to dynamically alter the elements that compose your X environment. To start
a client from a command line, you must have XII running, and you must use
the correct command-line syntax.

4-4 Running from the Command Line

Specifying the Syntax

The general syntax for all clients that you start from a command line is the
same:

client [-options] [&] (Return)

Options enable you to control the appearance and behavior of a client that
you start from a command line. Each client has its own options, but some
clients, such as the viewable clients discussed later in this chapter, use the same
options. The reference section contains the complete list of all client options.

You specify an option after the client name. The option begins with a hyphen
(-) and includes the option itself and an argument. For example, the following
is a typical command line to start an hpterm window with a black background
and white foreground:

hpterm -bg Black -fg White & (Return)

Choosing Background Processing

An important element of the command-line syntax is the ampersand (&) which
ends the command line. As mentioned earlier, the & tells the system to start
the client as a background process (a process that doesn't require the total
attention of the computer). Background processing enables you to have more
than one client running at the same time and frees your keyboard for further
use.

Although the & is an optional element, and you can choose to run a client as a
foreground process if you desire, you will probably find that in most cases, you
will use background processing.

Running from the Command Line 4-5

Starting Programs
You can start a client either locally or remotely. A local client is a program
that is running on your "local" system, the same system that is running your
X server. A remote client is a program that you view from your local display,
but the program actually resides and is running on a system other than yours,
a "remote" system.

Starting Local Clients

You can start a local client from the command line any time after you've
started XII and have a window displayed that has a command prompt. To
start the client, type the name of that client, followed by any options, then
press [Return].

It isn't necessary to specify options to run the client; just typing
the client name and pressing [Return] will start the client using a list
of option default values. System-wide defaults are contained in the
/usr /lib/Xli/ sys . Xdefaul ts file. Options that override these system-wide
defaults are contained in the .Xdefaults file in your home directory in
/usr/lib/Xll/app-defaults/client, and shell variables ($DISPLAY).
Command-line options, as you might suspect, override both of these default
files.

For example, the following gives you the default clock client: an analog clock
updated every 60 seconds:

xclock & (Return]

You can, however, override these defaults and start a clock client with a digital
readout in the lower left corner of the screen.

xclock -digital -geometry +1-1 & [Return)

Starting Local Non-Clients

A non-client normally relies on a terminal instead of a window for displaying
its output. To start a non-client program in an XII window environment, you
must first create a terminal emulation window, and then run the non-client in
that window.

4-6 Running from the Command Line

The following example simply creates an hpterm window. Using the command
prompt in the window, you can operate most HP-UXsystem commands (the
exception being a command like update which affects the entire system, not
just the X environment).

hpterm & (Return)

The window opens with its command prompt in the same directory as its
parent window, the window from which it was started.

At any command-line prompt in any X window, you can start a non-client
program simply by typing the start command for that program (usually the
program's name) followed by a (Return). For example, you could type the
following at the command-line prompt:

banner windows are great (Return)

The command prints a banner on the window.

Starting Remote Clients

A remote client is an Xll program running on a computer that is not the same
computer that the X server is running and displaying on. In other words, the
hallmark of a remote client is that the client runs on one computer while the
output displays on another.

You can start a remote client from the command line any time after you've
started the X Window System and have a window with a command prompt.
You can start a client on any remote host ~o which your system has access. A
remote host is the computer system that runs the remote client.

Gaining Remote Access

To gain access to a remote host, you must meet all of the following criteria:

• Be on a network with other systems. (This manual uses the NS-ARPA
Services commands in all examples.)

• Have the internet address and hostname of the remote host in your system's
/ etc/hosts file.

• Have a valid login on the remote host.

• Have the remote host listed in the / etc/XC. hosts file.

Running from the Command Line 4-7

• Have the remote host listed in a . rhosts file in your home directory on
your local system. (You may also want to have your local system listed in a
. rhost file on the remote host.)

The first three criteria provide basic network capability to your system. You
must have them to use the network whether or not you use the X Window
System. The last two criteria provide your local X server with the ability to
use the network. The .rhosts file lists the systems that have permission to use
your username and account to access a system without formally logging in.
The XO.hosts file contains a list of all XII hosts known to your X server. The
"0" signifies that the file is used by display 0 (similarly, display 1 would use an
Xl.hosts file).

Note

"
A . rhost file allows someone to access your login account
without giving a password. Depending on your situation, this
may pose a threat to the security of your system or the network
your system is on. Check with your system administrator and
carefully analyze your security needs.

Starting the Client

You have two choices when it comes to running clients on a remote host:

• You can log into the remote host and run a client.

• You can start a client remotely without formally logging in.

In either case, you need to select the display on which you want the output to,
appear.

Selecting the Display

Just as you need to select a remote host on which to run a client, so too you
need to select a display on which the client's output appears. Typically this
will be the display attached to your system, but it doesn't have to be.

For example, you could be sitting at your system reviewing lab reports kept on
a (remote) lab system when you get the idea to show the reports to Turner
at another division. You call to make sure Turner is in, then open a window
on Turner's system, display the lab report that interested you, and discuss its

4-8 Running from the Command Line

significance with Turner without the delay or trouble of making a physical copy
of the report and mailing it.

To help you in selecting a display, viewable clients have a -display option
that allows you to specify on the command line which system is to receive the
output. The syntax for the option is as follows:

-display host: display. screen

The host specifies the hostname of the system where you want the remote
client's output to appear (usually your own system). The display is the number
of the display where the output is to appear (usually 0 on an HP Series 300
and 0-3 on an Series 800). The screen is the number of the physical screen
were the output is to appear (usually 0).

Examples of Starting Remote Clients

The following examples illustrate several ways of doing the same thing:
starting an xload client on remote host hpcvf aa and displaying it on the
console of your local system hpcvfbb.

Example 1: Logging In to a Remote Host the Wrong Way. At the command-line
prompt of an existing terminal window, you could type the following:

rlogin hpcvfaa (Return)
xload -display hpcvfbb:O.O (Return)

U sing this command is a mistake in most cases. Note the &. is missing from
the end of the command line. This command would not return a command
prompt to the window until you stopped the xload client. Your window would
effectively be "frozen."

Example 2: Logging In before Running the Client in Background. At the
command-line prompt of an existing window, you could type the following:

rlogin hpcvfaa (Return]
xload -display hpcvfbb:O.O &. (Return)

Similar to example 1, these two command lines log you in and then start the
xload client, this time as a background process. This leaves your original
window free for use, but logged into hpcvfaa rather than your local system.
The display is again to your system's console.

Running from the Command Line 4-9

Example 3: Using a Remote Shell to Start a Client. At the command-line
prompt of an existing window, you could type the following:

remsh hpcvfaa -n /usr/bin/Xll/xload -display hpcvfbb:O.O & [Return)

Respectively, this command starts a remote shell, on remote host hpcvfaa,
redirects remsh input (necessary in this case), starts the client xload, and
directs output to system hpcvfbb, display 0, screen 0, as a background process.

Note that you wisely used the full path to the xload client when starting it.
This is a good idea, especially in situations where the remote machine might
have two versions of the same client (for example, an XID and an XII version
of xload). The remsh command does not allow the $PATH variable.

The benefit of using a remote shell instead of a remote login is that a the local
system starts only one process (the client) with a remote shell, while with the
remote login the local system starts two processes (the remote login and the
client).

Starting Remote Non-Clients

Starting a remote non-client is similar to starting a remote client except that
before you start the non-client, you must first start a terminal emulation
window in which to run the non-client.

You can always log into the remote host and start a non-client. Using an
existing window essentially makes that window a "terminal" of the remote
host. Output from the non-client appears in the window. When you exit the
non-client and the remote host, the window "returns" to the local system.

Starting a non-client using a remote shell such as remsh, however, is sometimes
inappropriate. To use a remote shell, you must first create a terminal
emulation window in which to run the non-client. If the non-client executes
too quickly, you may not see the results, since, once the non-client finishes
executing, the emulation window to the remote host closes.

4-10 Running from the Command Line

Table 4-5. Choosing a Method of Displaying Remote Processes

H you want the window to ... Do this ...

Remain after you have finished the initial Use an existing window to log in to
remote process. the host before executing the remote

command.

Disappear after you're finished with the Execute the command as an option of
remote process. creating a new window.

Example 1: Logging In to a Remote Host before Running the Non-Client

At the command-line prompt of an existing window, you could type the
following:

rlogin hpcvfaa (Return)

11 (Return)

If you are familiar with networks, you probably recognize this command. It
simply logs you in to a remote host, hpcvfaa, and then uses the HP- UX 11
command to list the files in your home directory on that host. Remember,
operating system commands, because they are part of HP -UX and not the X
Window System, are non-clients.

Example 2: Starting a Window That Starts a Remote Non-Client

This example and the next one show what happens when the same command
syntax is used to start different types of remote non-clients. This example
shows a non-client that is not interactive.

At the command-line prompt of an existing window, you could type the
following and press (Return):

hpterm -display hpcvfbb:O.O -e remsh hpcvfaa -n 11 &

This example starts another hpterm terminal emulation window client. As
the first option of that client (-display), the ouput is directed to your local
display (hpcvfbb). As the second option (-e), the hpterm client executes a
remote shell on hpcvfaa that connects the window to a remote host (hpcvfaa)
and lists the files in your home directory there.

Running from the Command Line 4-11

Although, at first glance, this command line appears to do the same thing as
example 1, there is an important difference. When the 11 command of example
2 finishes executing, the window created for it to run in will disappear whether
or not you've had time to view all the files. Remember, the window will close
when the remote command has finished executing. Therefore, this is a poor
command syntax to use in this situation.

Example 3: Starting a Remote Non-Client Window

At the command-line prompt of an existing window, you could type the
following and press (Return):

hpterm -display hpcvfbb:O.O -e remsh hpcvfaa -n vi report &

This example is the same as example 2 except that the non-client started is
different. The non-client vi is interactive, that is, you issue commands to
it and specifically tell it when you are finished. You start vi and open the
report file. In this case, the window stays displayed until you exit vi. You
could edit report and exit, closing the window. Or you could save report
and read in another file. As long as you didn't exit vi, your "remote editing
window" would stay displayed.

Stopping Programs
How you stop a program you've started from a command line depends on
whether the program is a client or non-client.

Stopping Clients

Clients like xload and xclock have no data to save. You stop them by
choosing the "Close" selection from the window menu.

Other clients, like hpterm, xterm, and bitmap, may contain data you want to
save. Save the data before you stop the client. In the case of terminal windows,
a non-client running in the window may actually contain the data. Stop the
non-client in the approved manner before you stop the window. When you
have a command-line prompt in a terminal window, you can stop the window.

4-12 Running from the Command Line

In the case of bitmap, use the "Write Output" selection on the sidebar menu to
save the bitmap before you stop the client.

After you have saved any data and exited any non-clients (in the case of
terminal windows), stop the client by choosing the "Close" selection from the
client's window menu. Note that if you started a non-client as an option of
creating a window, when you stop the non-client, the window will stop.

Stopping Non-Clients

Stop all non-clients in the manner approved in the instructions for that
non-client. Generally, a non-client program stops automatically when it finishes
executing or has a "stop" provision.

Killing Programs That Won't Stop

If for some reason (and you will no doubt discover some) you cannot stop a
program in the normal manner, you should "kill" the program before you
exit the window system. Killing the program means using the HP-UX kill
command to stop the program's execution environment or "process."

Other Ways to Stop a Program

Before you use the kill command to stop a program's process, try the
following key sequences:

• Press (CTRL) and, while holding it down, press 0.
• Press (CTRL) and, while holding it down, press 0.
• Press @.

• Press (ESC), then 0, then @.

Killing the Program's Process

If none of these key sequences stop the program, use the following steps to
kill the program's process:

1. Save any data that needs saving.

2. Find the PID (process ID) for the program by typing the following:

ps -fu username (Return)

Running from the Command Line 4-13

where username is your login name. The ps -fu command lists all the
processes running under your login name. You should be able to identify the
program you want to kill by looking for it under the "COMMAND" column
(the rightmost column in the list). The PID for the program will be located
in the second column from the left.

3. To kill the program, type:

kill -2 pid [Return) The equivalent of (CTRL) 0.
where pid is the PID number.

4. If this doesn't work, type:

kill -3 pid (Return) A stronger version of kill.

5. If this still doesn't work, type:

kill -9 pid [Return) The strongest version of kill.

You can kill several programs at once by including several PIDs separated by
spaces in the command. Just be careful that you have the correct PIDs.

Terminal Emulation Clients
The X Window System comes with the following two terminal emulation
clients:

hpterm Emulates a TermO terminal.

xterm Emulates DEC VT102 and Tektronix 4014 terminals.

Emulating an HP Terminal with the 'hpterm' Client

The hpterm terminal emulation window is the default terminal used by your
X Window System and provides you with basic access to your system. The
window's command-line prompt functions exactly like the command-line
prompt of an HP TermO terminal. TermO defines an HP level 0 terminal; it is
a reference standard defining basic terminal features. For more information
about TermO terminals, see TermO Reference in the HP-UX documentation set.

4-14 Running from the Command Line

The hpterm window client includes the following features:

• Escape sequences that control terminal operation.

• 16 definable softkeys.

• Full Roman8 character set (ASCII and Roman Extension), ISO 8859.1
character set, and Roman Extension 7-bit characters set.

• Two character fonts (base and alternate).

• Screen editing functions.

If your needs require one or more of these features, see chapter 7, "Customizing
Special X Environments," where they are discussed in detail.

Syntax

The syntax of the hpterm window client is as follows:

hpterm [-options] [&]
You'll find a list of common viewable-client options in "Working with Common
Client Options" later in this chapter. For a complete list of hpterm options, see
the hpterm pages in the Reference section.

Using 'hpterm' Terminal Window Softkeys

The hpterm client softkeys work exactly like an HP TermO terminal's softkeys.
To display hpterm softkeys, position the pointer in an hpterm window and
press the (Menu) key. Clicking on a soft key selects that function or setting.
Pressing the (Menu) key again turns off the soft key display.

Additionally, you can color the following elements of hpterm softkeys:

• Background.

• Foreground.

• Top shadow.

• Bottom shadow.

• Top shadow tile.

• Bottom shadow tile.

Running from the Command Line 4-15

Coloring hpterm soft keys is similar to coloring other clients and to coloring the
HP Window Manager. You'll find more information about coloring in chapters
5 and 6.

Coloring 'hpterm' Scrollbars

The hpterm client also has an option for displaying scrollbars. Scrollbars
enable you to scroll the contents of a window, for example, a text file you are
editing. You can specify the color and the width for hpterm scrollbars. This is
also covered in chapter 5.

Emulating a DEC or Tektronix Terminal

The xterm client is a terminal emulation window. xterm windows emulate
DEC VT102 and Tektronix 4014 terminals. Although xterm windows are not
the default terminal windows for the X Window System, you can use them as
your needs require.

Syntax

The syntax of the xterm window client is as follows:

xterm [-options] [&]
You'll find a list of common viewable client options in "Working with Common
Client Options" later in this chapter. For a complete list of xterm options, see
the xterm pages in the reference section.

Using 'xterm' Scroll Features

The xt erm client has a "jump scroll" option (- j). The option enables xt erm,
when its scrolling gets behind, to scroll (jump) several lines at a time from the
top of the window.

Another option (-s), enables xterm to scroll asynchronously. This enables
xterm to scroll faster when the window screen is no longer up to date because
of a high network load.

To use either option, include the option on the command line after the name of
the client.

4-16 Running from the Command Line

Using 'xterm' Menus

The xterm client has three menus. The standard xterm menu pops up when
the "control" key and button 1 are pressed while the pointer is inside the
xterm window. The "Modes" menu pops up when the "control" key and
button 2 are pressed while the pointer is in the window. The "Tektronix"
menu pops up when the "control" key and button 2 are pressed in a Tektronix·
window.

Special Terminal Emulator Options

Both hpterm and xterm, because they are terminal emulators, have some
special options that other clients don't have.

Making a Login· Window

Both hpterm and xterm have an option that allows you to specify that the
window runs a login shell before displaying the command-line prompt. Using
the -Is option, the shell runs as a login shell, that is, the shell reads the
/ etc/ csh . login file and . login, or / etc/profile and . profile file before
starting the window.

Cutting and Pasting with the Mouse

Both hpterm and xterm allow you to use the mouse for cut and paste
operations. You can cut text from one location in a window to another, or
from one window to another.

Currently, hpterm and xterm use the button definitions in the following table
for cut and paste operations:

Table 4-6.
Mouse Button Definitions for Cut and Paste Operations

If you see ... On a 2-button mouse press ... On a 3-but ton mouse press ...

Button 1 The left button. The left button.

Button 2 Both buttons simultaneously The middle button.

Button 3 The right button. The right button.

Running from the Command Line 4-17

To cut and paste using 'hpterm'.

Cutting text To cut text, follow these steps:

Pasting text

1. Press and hold the (Shift) key.

2. Position the pointer at the start of the text you want to cut
and press and hold button 2. This marks the beginning of
the text region.

3. Drag the pointer to the end of the text you want to cut and
release the button. This copies the text into a global cut
buffer, a buffer that holds text that has been edited out.
The region is marked as you drag the pointer.

To paste text from the global cut buffer into a window, follow
these steps:

1. Press and hold the (Shift) key.

2. Position the pointer in the window in which you want to
paste the text. Because the text will appear like it is being
typed at the cursor's location, you may need to position the
cursor as well.

3. Click button 3 to "type" the text.

Copying a line To copy a single line of text from one place and paste it in at
the cursor location, follow these steps:

1. Press and hold the (Shift) key.

2. Position the pointer at the start of the text you want to
copy.

3. Click button 1 to copy text from the pointer to the end of
the line and "type" it at the cursor location in the same
window. (Position the pointer in another window and click
button 3 to "type" the text in the second window.)

To cut and paste using 'xterm'.

Cutting text To cut text, follow these steps:

1. Position the pointer at the start of the text you want to cut.

2. You can cut a text region in the following three ways:

4·18 Running from the Command Line

Pasting text

• To cut a region character by character, click and hold
button 1.

• To cut a region word by word, double-click and hold
button 1.

• To cut a region line by line, triple-click and hold button 1.

This marks the beginning of the text region.

3. Drag the pointer to the end of the text you want to cut and
release the button. This copies the text into the global cut
buffer.

To paste text from the global cut buffer into a window, follow
these steps:

1. Position the pointer in the window in which you want to
paste the text. Because the text will appear like it is being
typed at the cursor's location, you may need to position the
cursor as well.

2. Click button 2 to "type" the text.

Extending text You can extend or contract either half of the current selection
by following these steps:

Scrollbars

1. Position the pointer in the top or bottom half of the text
that you have selected with button 1.

2. Press and hold button 3.

3. To expand or contract the half that you picked, drag
the pointer away from or toward the center point of the
selection.

4. When the selected area includes the correct text, release
button 3.

You can start either an hpterm or xterm window with scrollbars. To do this,
include the -sb option on the command line when you start the window. For
example, to start an hpterm window with a scrollbar, type the following line
after the command prompt:

Running from the Command Line 4-19

hpterm -sb & (Return)

Window Titles and Icon Names

By default the title of a terminal emulation window is Terminal Emulator.
Equally original are the default names that appear on labels of hpterm and
xterm icons. These are, respectively "hpterm" and "xterm." Two options
enable you to give your terminal windows and icons more original names if you
so desire.

Use the -title option to give a title to a terminal emulation window. Titles
with two or more words must be enclosed in quotes ("titlel title2").

Use the -n option to give a name to the icon of a terminal emulation window.
Icon names of two or more words must be enclosed in quotes ("namel
name2"). Note also that lengthy names may be truncated on the right to the
width of the label.

The following example illustrates the use of these two options:

hpterm -n System -title "System Window" & (Return)

This example creates an hpterm window, giving it the title "System Window."
When the window is iconified, the icon label reads "System."

Telling Times with 'xclock'
The X Window' System includes a clock client called xclock. You can choose
either an analog clock (a clock with hands and a face) or a digital clock (a
clock with a text readout showing the day, date, time, and year).

Syntax

The syntax for xclock is as follows:

xclock [-options] [&]
You'll find a list of options that xclock shares with other viewable clients in
"Working with Common Client Options" later in this chapter. For a complete
list of xclock options, see the xclock pages in the reference section.

4-20 Running from the Command Line

Although ampersand (8c) is an option, you will rarely find it practical to use
xclock with out it. When run from the command line as a foreground process
(without the 8c), xclock takes control of the window and does not return the
command-line prompt, thus making it impossible for you to use the window
until you either close the clock or kill its process.

Some 'xclock' Options

The xclock client comes with some options that are unique.

Marking the Half Hours

The -chime option causes the speaker on your system to sound once on the
half hour and twice on the hour.

Selecting the Clock Format

As mentioned, xclock has two formats: analog and digital. The analog format
is the default.

Specifying the -analog format (or no format) draws a conventional 12-hour
clock face with strokes marking the hours and ticks marking the minutes.

Specifying the -digital format draws a digital readout containing the day,
date, time, and year. The format automatically varies for local language
custom based on the value of the $LANG environment variable. (Of course,
you must specify an appropriate font for the language you select.) For more
information about $LANG, refer to the HP-UX Native Language Support
manual.

Updating the Time

The -update seconds option enables you to select the time interval between
updates to the clock display. The default is an update every 60 seconds.

Running from the Command Line 4-21

Examples

The following examples illustrate both clock formats:

xclock -digital -update 10 & (Return)

xclock -analog -chime -update 5 & (Return)

The first example creates a digital clock that updates every 10 seconds. The
second example creates an analog clock that chimes every 30 minutes and
updates every 5 seconds.

Viewing System Load with 'xload'
The X Window System includes a client called xload that displays a histogram
of the current system load.

Syntax and Options

The syntax for xload is as follows:

xload [- options] [&]

You'll find a list of options that xload shares with other viewable clients in
"Working with Common Client Options" later in this chapter. For a complete
list of xload options, see the xload pages in the reference section.

As with xclock, the & that completes an xload command line is, strictly
speaking, an option. But you will rarely find it practical to use xload without
it. When run from the command line as a foreground process (without the i),
xload does not return the command-line prompt, thus making it impossible for
you to use the window until you either close or kill the xload client.

4-22 Running from the Command Line

Some 'xload' Options

The xload client comes with some options that are unique.

Updating the Load

The -update seconds option enables you to select the time interval between
updates to the load histogram display. The default is an update every 5
seconds.

Scaling the Histogram Graph

The -scale division option enables you to adjust the scale of the histogram
by drawing extra division lines on the graph. By default xload measures the
average load on the system using a scale of 0 (no load) to 1 (a single division).
Using the -scale option, however, you can select a division other than 1
against which to measure the load.

Note that if you use the default setting and the system load goes beyond that,
extra divisions will be drawn automatically to keep the load in scale.

Example

The following example illustrates an xload client started from the command
line:

xload -update 15 -scale 2 & (Return)

This example creates a load histogram that updates every 15 seconds and uses
a scale of 2 units.

Running from the Command line 4-23

Working with Common Client Options
The viewable clients have the following options in common:

• Color.

• Display.

• . Size and location.

• Fonts.

• Other options.

Color Options

All viewable clients have elements that you can color. If your system uses a
monochrome monitor, it is still possible to use the tiling capability of the HP
Window Manager to achieve a pleasing 3-D gray-scale color scheme.

The viewable XII clients, as you might expect, have options for specifying the
color of their elements.

Available Client Color Options

The following table lists the colorable elements of XII clients.

Table 4-7. Color Options for Viewable X11 Clients

Option Descriptions XII Clients

To change this ... Use this option ... hpterm xterm xclock xload

Foreground color. -fg color V V V V
Background color. -bg color V V V V
Cursor color. -cr color V V
Pointer color. -rns color V V
Clock hands color. -hd color V
Hand edge color. -hI color V V

4-24 Running from the Command Line

You can specify an element color on the command line in the following two
ways:

• By listing the color name after the option .

• By listing the hexadecimal color value after the option.

The file /usr/lib/Xll/rgb. txt lists all colors that have "names." Specifying
a name after a color option causes the element referred to by the option to
display in that color.

For example, the following command line creates an hpterm window with a
black background and a white foreground:

hpterm -bg Black -fg White & (Return)

Using Hexadecimal Color Values on the Command Line

While using color names is an easy way to select colors, you are limited by the
number of available names. Fortunately, the use of hexadecimal color values
offers a solution. You can specify any color, whether it has a name or not, by
using a hexadecimal color value. This value corresponds to the amount of each
of the primary colors (red, green, and blue) that are used to make up the color.

If you use the C shell (csh), a color value consists of a number sign (#) followed
by a hexadecimal number for the value of each color (red, green, blue). If
you use the Bourne shell (sh) or Korn shell (ksh), a color value consists of
\# followed by a hexadecimal number for each color (red, green, blue). The
hexadecimal number can be 1, 2, 3, or 4 digits long. You must have the same
number of digits for each of the primary colors. Thus, valid color values consist
of 3, 6, 9, or 12 hexadecimal digits.

For example, #3a3 and #300a00300 are both valid color values for the same
color, a shade of green. #000, #000000, #000000000, and #000000000000 all
specify the color black. And #fff, #ffffff, #fffffffff, and #ffffffffffff all specify
white. The number of digits you use in color values depends on your need for
subtle shades of color and the capability of your display hardware.

Examples

As an example of specifying color on a command line, suppose you wanted an
analog clock with a plum background, white foreground, and black hands with
white edges. You could specify the clock in either of the two following ways:

Running from the Command Line 4-25

xclock -bg plum -fg white -hd black -hI white & ~

or

xclock -bg #c5489b -fg #fff -hd #000 -hI #fff & (Return)

For the purposes of this example, plum, white, and black were chosen because
they are colors with valid color names in /usr/lib/Xll/rgb. txt. However,
you can specify a unique color (one with no name equivalent). For example,
a slightly darker plum for the background is created with the following
hexadecimal value:

xclock -bg #ba408b -fg white -hd black -hI white & ~

Specifying Size and Location on the Command Line

Each client you add to your environment is located at a certain position on the
root window. The default position is the upper left corner, but you can place a
client anywhere on the root window using the -geometry option.

The Syntax of the '-geometry' Option

The -geometry option has the following syntax:

-geometry WidthxHeight[±column±row]

Width

Height

column

row

The width of the window in characters (for terminal windows)
or pixels (for other clients). Note that the width of the
terminal window that appears varies depending on the font
size.

The height of the window in lines (for terminal windows) or
pixels (for other clients). The height of a terminal window is
also dependent on the size of the font chosen.

The column location of the window given in pixels. Plus (+)
values refer to the left side of the window. Minus (-) values
refer to the right side of the window.

The row location of the window given in pixels. Plus (+)
values refer to the top of the window. Minus (-) values refer
to the bottom of the window.

4-26 Running from the Command Line

You have the following choices for defining client size and location:

• Including both the size and location in the command. The window appears
as specified.

• Including only the size in the command. The window appears in the specified
size at the default location.

• Including only the location in the command. The window appears at the
specified location in its default size.

• Including neither size nor location in the command. The window appears in
the default size at the default location.

Placing Clients on the Root Window

The following table lists some typical locations for a 1280x 1024 high-resolution
display.

Table 4-8.
Example Locations for an 80 x 24 X11 Terminal Window

To position a window here ... Use this location ...

The upper left corner of the root window. +1+1

The lower left corner of the root window. +1-1

The upper right corner of the root window. -1+1

The lower right corner of the root window. -1-1

The left side at mid-window. +1+512

The right side at mid-window. -1+512

The top of the root window and right of center. +635+1

Centered at left. +1+330

Centered at right. -1+330

Centered in the root window. +320+330

Running from the Command Line 4-27

Note

•
Example

The resolution of screens varies. Some locations may work for
you but be off the screen for someone else! Therefore, you may
need to experiment, altering the geometry specifications to fit
the resolution of the screen.

The following examples illustrate a typical command-line use of the geometry
option:

xclock -geometry 90x90-1-30 & [Return)

xload -geometry 120x90+1-1 & [Return)

The first example starts an xclock client. The geometry option gives the clock
a 90~pixel by 90-pixel size and locates it 1 pixel to the left and 30 pixels up
from the lower right corner of the screen.

The second example starts an xload client. The geometry option gives the
client a 120-pixel by 90-pixel size and locates it in the lower left corner of the
screen.

Specifying the Display on the Command Line

As described above in "Starting Remote Clients," you can start an X client
program on one computer and have the output of the program display on
another. The default display is obtained from the DISPLAY environment
variable of the system on which the client starts, but the DISPLAY variable
can be reset dynamically for a client by including a -display option on the
command line when you start the client.

The Syntax for the '-display' Option

The -display option has the following syntax:

-display [host:display.screen]

4-'28 Running from the Command Line

host

display

screen

Example

Specifies the hostname of a valid system on the network.
Depending on the situation, this could be your system's
hostname or the hostname of a remote system.

Specifies the number of the display on the system on which
you want the output to appear. On HP 9000 S300's, this
number will usually be o. On HP 9000 S800's, this could be
any number depending on the configuration.

Specifies the number of the physical CRT screen where the
output is to appear. The default is o.

An example of using the display option on the command line is the following:

hpterm -display hpcvfaa:O.O & (Return)

This command, when issued at a command-line prompt, starts an hpterm
process on the local system and displays output (the window) on screen 0,
display 0 of the hpcvfaa system. The window has the default size, location,
and color.

Specifying the Font in the Command Line

In addition to the options discussed above, the viewable clients also have an
option that enables you to specify the font for text. The -fn option enables
you to select a font for the label that displays on the xload client as well as the
text for terminal emulation windows.

Working with Fonts

Fonts are in subdirectories within the /usr/lib/Xll/fonts directory. You may
specify a font to use in either of two ways:

• Providing an "alias" for the font .

• Specifying a list of the font's characteristics.

These methods of specifying fonts are discussed in more detail in chapter 5.

If no font is specified, or if the server can't find the font, fixed is usually used.

Running from the Command Line 4-29

The two terminal emulators also have a -fb option. You can use this option to
specify a a font for bold text. The text specified must be the same height and
width as the font specified with -fn, the "normal" font.

Example

The following examples illustrate the command-line use of the font option:

hpterm -fn hpS .10x20 t (RetUffl)

hpterm -fn hp7.10X20 t (RetUffl)

The first line creates an hpterm window with a large, easy-to-read font
(hp8.10x20). The font is located in /usr/lib/Xll/fonts/misc/hpS .10x20,
and is referred to by the alias hpS .10x20. The second line represents a
misspelling of the first line. The result is the creation of a window, but the font
used for the command-line prompt is the default font, not hp8.10x20.

For information about fonts, refer to chapter 5.

Where to Go Next
If your X Window System environment meets your present needs, you can
stop here. If, however, you would like to customize your environment a little,
perhaps coordinate the colors of your clients, or select different clients to
display when you start X, or arrange them more efficiently on your root
window, you should continue to chapter 5.

Chapter 6 explains, in more detail than the average mortal need be concerned
about, how to work with the OSF /Motif Window Manager and its resources to
fine-tune your control over your X environment. Chapters 7, 8, and 9 present
cases where customization is needed because of special hardware considerations
or the extensive use of graphics.

4-30 Running from the Command Line

5
Customizing Your Local X Environment

As you become familiar with the X Window System, you will probably want to
modify your X environment to better suit your situation. Chapter 5 discusses
customizing your window environment. Using the information in this chapter,
you can change the appearance and behavior of the X Window System to suit
your needs without affecting the appearance and behavior for other users. These
changes include the following:

• Customizing the colors of clients.

• Changing the clients that start when you start X.

• Starting X at login.

• Creating custom bitmaps.

• Customizing the root window.

• Working with fonts.

• Using Remote Hosts.

Before You Begin Customizing
To customize your window environment, you must modify or create three
configuration files. These files contain information that the X server uses to
configure your window environment. Incorrectly modifying these files could
bring your X Window System to a screeching halt. So if you are new to this
type of thing, read the following two sections. They list some simple safety
precautions (often overlooked by people who "know what they're doing") that
keep you from getting into trouble if you make a mistake. They also give you a
little background on the configuration files with which you'll be working.

Customizing Your Local X Environment 5-1

How to Begin Customizing

Swimming pools you should jump into with both feet; customizing your
environment you should approach step by step. Although the following safety
tips may take a little more time to implement, they are the steps that people
regretfully "wish they had t~en" after something has gone wrong.

Making Backup Copies of Your Work

Don't modify any original files. Make a copy of the original file and then
modify the copy. That way, if all else fails (and it sometimes does), you can
go back and get another copy of the original and start again. As you get
deeper into rearranging your environment, test your modifications and, if they
work properly, save that version of your modifications, make a copy of it, and
continue the rest of your modifications on the copy.

Making Incremental Changes

Make incremental changes when you edit the configuration files. That way, if
something goes wrong, you can easily isolate the mistake. It's much easier to
pinpoint a mistake in syntax or spelling if you've only modified one line of one
file, rather than multiple lines in several files.

Choosing a Text Editor

The three configuration files are text files. You can use vi, emacs, or any other
editor that produces text files to do your editing. You edit the text of the
configuration files just like you would edit the text of a letter, replacing what
you don't want with something more appropriate.

One trick that you might consider is to comment out a line that you don't
want rather than deleting it from the file. To comment out a line, place
a number sign or pound sign (#) in the left margin of the line (use a! to
comment out a line in .Xdefaults). This allows you to use the line as a model
for future editing and provides you with the opportunity to restore it (by
un commenting it) at some future time.

5·2 Customizing Your Local X Environment

Where to Begin Customizing

Three configuration files come with the X Window System:

• sys .Xdefaults

• sys .xllstart

• system.mwmrc

You'll find these files in the /usr/lib/Xll directory. The files supply
system-wide default configuration for users who start X but don't have
individual configuration files in their home directories.

The following three configuration files should be in your home directory if you
want to customize your X environment. Typically, you copy them from their
system-wide versions in /usr/lib/Xl1:

.Xdefaults

.xl1start

.mwmrc

Specifies default appearance and behavior characteristics for
clients.

Specifies the clients that start when the X Window System
starts.

Specifies the menus, menu selections, and button and keyboard
bindings that control the OSF /Motif Window Manager. This
file is discussed in more detail in chapter 6.

Note that the /usr/lib/Xl1/app-defaults/ directory may also contain
configuration files for client applications.

Customizing the Colors of Clients
You control the color of the clients (including the window manager) that
display in your X environment by modifying the .Xdefaults file. Valid color
names are stored in /usr/lib/Xl1/rgb. txt.

Coloring window manager features such as borders is covered in "Managing the
General Appearance of Window Frames" in chapter 6.

Customizing Your Local X Environment 5-3

Copying 'sys.Xdefaults' to '.Xdefaults'

When you issue the xllstart command to start the X Window System, the
command looks in your home directory for a .Xdefaults file. If it finds the
file, it uses the information in the file to color your X environment. If it doesn't
find the file, the xllstart command uses /usr/lib/Xll/sys .Xdefaults.

To begin customizing the colors of your X environment, copy the
sys .Xdefaults file to your home directory as .Xdefaults.

cp /usr/lib/Xll/sys.Xdefaults $HOME/.Xdefaults (Return)

This gives you a read-only copy of .Xdefaults. You must make the
. Xdefaul ts file writable so that you can modify it. To do this, type the
following command:

chmod u+w .Xdefaults (Return)

This will enable you to color the clients in your environment without affecting
the environments of other users on the system.

If the file becomes corrupted and inoperable during the editing process, you can
always make a fresh copy from /usr/lib/Xll/sys .Xdefaults and begin the
editing process again.

Changing Client Colors

Changing the color of a particular client element is a simple process. You
specify a value for the resource that controls the element you want to color.
Use the following steps:

1. Start your text editor and open the . Xdef aul ts file.

2. Scroll down or search for the client*resource you want to color.

3. Delete the! and the space from the left margin to activate the line.

4. Replace the "<color>" at the end of the line with the color you desire.

5. Save the file and exit the text editor.

To view the effect of a change to .Xdefaults, simply start a client of the type
whose color you modified.

5-4 Customizing Your Local X Environment

Determining Which Elements to Color

The following tables list the colorable elements of your X environment by
client.

Table 5·1. Terminal Window Elements

To color this element ... Look for this resource ...

hpterm window text ! HPterm*foreground:

hpterm window background ! HPterm*background:

hpterm window text cursor ! HPterm*cursorColor:

hpterm window mouse pointer ! HPterm*pointerColor:

xt erm window text ! XTerm*foreground:

xterm window background ! XTerm*background:

xt erm window text cursor ! XTerm*cursorColor:

xterm window mouse pointer ! XTerm*pointerColor:

Table 5·2. Load Histogram Elements

To color this element ... Look for this resource ...

system load histogram foreground ! Xload*foreground:

system load histogram background ! Xload*background:

Table 5·3. Clock Elements

To color this element ... Look for this resource ...

analog clock tick marks ! XClock*foreground:

digital clock text ! XClock*foreground:

clock background ! XClock*background:

clock hands ! XClock*hands:

edges of clock hands ! XClock*highlight:

Customizing Your Local X Environment 5-5

Syntax

At some point, you may want to change the color of an element that is not
in your .Xdefaults file. You can add that element to the file by typing it in
.Xdefaults on a line by itself using the following syntax:

. { color name }
clzent*resource: #h d . I exa eczma

For client, you can use any valid viewable X client. For resource, you can
use any valid color resource for that client. The surrounding lines in the file
provide you with examples to model your line after. You can find a complete
list of the resources for each client in the reference section.

The color Y2u specify can be a color name from the /usr/lib/Xll/rgb. txt
file or a hexadecimal value. While color names are easier to remember,
hexadecimal values enable you to specify a greater variety of colors.

A hexadecimal value is composed of three segments, one segment for each of
the primary colors red, green, and blue. A hexadecimal value consists of a
number sign (#), signaling the start of a hexadecimal number, followed by 1, 2,
3, or 4 hexadecimal digits for each primary color. Thus a valid color value can
be 3, 6, 9, or 12 hexadecimal digits.

For example, #3a3 and #300a00300 are both valid color values for the same
color, a shade of green. The number of digits you use in color values depends
on your need for subtle shades of color and the capability of your display
hardware.

Examples

The following examples illustrate some typical lines in your. Xdefaul ts that
color client elements.

XClock*foreground:
XClock*background:
XClock*hands:
XClock*highlight:

Black
White
SkyBlue
Black

The above lines color the elements of the xclock client. The first line makes
the tick marks of an analog clock (and the readout of a digital clock) black.

5-6 Customizing Your Local X Environment

The next line gives ita w hi te background (face). The next two lines color the
hands of an analog clock skyblue with black borders.

When coloring client elements, you should usually color adjacent elements
in contrasting colors. The obvious mistake is coloring clock hands the same
color as the background. Sure, the hands display in the color you select, but
it's frightfully hard to tell the time. The same holds true for foregrounds and
backgrounds that lack sufficient contrast.

What Colors Are Available

You can color your XII environment by specifying any of the color names
listed in the following table. Type the color name exactly as it appears below.

Customizing Your Local X Environment 5-7

Table 5-4. X Window System Color Name Table

Available Colors

Aquamarine Black Blue BlueViolet

Brown Cadet Blue Coral Cornflower Blue

Cyan DarkGreen DarkOliveGreen DarkOrchid

DarkSlateBlue DarkSlateGray DarkSlateGrey DarkTurquoise

DimGray DimGrey Firebrick ForestGreen

Gold Goldenrod Gray Green

Green Yellow Grey IndianRed Khaki

LightBlue LightGray LightGrey LightSteelBlue

LimeGreen Magenta Maroon MediumAquamarine

MediumBlue MediumForestGreen MediumGoldenrod MediumOrchid

MediumSeaGreen MediumSlateBlue MediumTurquoise Medium Violet Red

MidnightBlue Navy NavyBlue Orange

OrangeRed Orchid PaleGreen Pink

Plum Red Salmon SeaGreen

Sienna SkyBlue SlateBlue SpringGreen

SteelBlue Tan Thistle Transparent

Turquoise Violet Violet Red Wheat

White Yellow YellowGreen

Where to Find the Available Color Names

All of the color names available in the X Window System are listed in the
/usr/lib/X11/rgb. txt file. You can find the names of colors by typing the
following command to view the file:

more /usr/lib/X11/rgb.txt (Return)

5-8 Customizing Your Local X Environment

The file is several "pages" long, so you may find it more convenient to make a
printed copy of the file using the following command:

pr -160 -h "Xll Color Table" /usr/lib/Xll/rgb.txt I Ip [Return}

Determining Where to Color Your Environment

The usual place to specify colors is in the . Xdef aul ts file in your home
directory. However, you can change the color of a particular instance of an
element (such as the foreground color of a single window) by specifying that
color on the command line that starts the client. If you start the client when
you start XII, the command line would be in the .xllstart file. If you start
the client from a menu, the command line would be in the .mwmrc file.

For example, if you wanted an hpterm window to have a DarkSlateGrey
background and White foreground, you could specify these colors on the
command line you used to start the window.

Coloring a Single Instance of a Client

The following command, issued at the command line prompt, overrides
any background and foreground colors specified in the . Xdef aul ts file and
creates a single hpterm window with a DarkSlateGray background and White
foreground.

hpterm -bg DarkSlateGrey -fg White & [Return}

This syntax should be familiar to you if you have read chapter 4.

Coloring Windows that Start Automatically

The following line in your . xllstart file overrides any background and
foreground colors specified in the . Xdef aul t s file and creates an hpt erm
window with a DarkSlateGrey background and White foreground each time
you start XII.

hpterm -bg DarkSlateGrey -fg White &

Note that the syntax of the above example is exactly like the syntax used when
you start a client from the command line.

Customizing Your Local X Environment 5-9

Coloring Windows that Start from Menus

The following line in your . mwmrc file overrides any background and foreground
colors specified in the . Xdefaul ts file and, when you choose the Dark Window
selection from the menu, creates an hpterm window with a DarkSlateGrey
background and White foreground.

"Dark Window" f.exec "hpterm -bg DarkSlateGrey -fg White &;"

This syntax is similar to the command-line syntax with which you are already
familiar. You'll learn more about it in "Managing Window Manager Menus" in
chapter 6.

Coloring 'hpterm' Softkeys and Scrollbars

To color hpterm softkeys or scrollbars, you may need to add one or more lines
from the following table to your . Xdef aul ts file:

Table 5·5.
You Can Color These 'hpterm' Softkey and Scrollbar Elements

To color this element ... Add tIns line ...

soft key text HPterm *softkey*foreground:

soft key background HPterm *softkey*background:

top and left soft key bevel HPterm*softkey*topShadowColor:

bottom and right soft key bevel HPterm *softkey*bottomShadowColor:

top and left soft key bevel tile HPterm*softkey*topShadowTile:

bottom and right softkey bevel tile HPterm*softkey*bottomShadowTile:

scrollbar foreground HPterm*scrollBar*foreground:

scrollbar background HPterm *scrollBar*background:

The lines you add to the. Xdefaul ts file all have the following syntax:

HPterm* *resource: . {
softkey } { color }
scrollBar #hexadeczmal

5·10 Customizing Your Local X Environment

The color you select can be either a color name (Magenta) from the rgb. txt
file or a hexadecimal value (#ffeOOOffe).

For tile, you can select a number of tile "patterns." For a complete list see
"Changing the Tiling of Window Frames" in Chapter 6.

Changing the Clients that Start When You Start X
By modifying the .xllstart file in your home directory, you can control which
clients appear as part of your environment when you start X.

Copying 'sys.x11start' to '.x11start'

The clients that start by default when you start X are specified by command
lines in the sys.xllstart file. To change the clients that start in your
personal X environment from the default (hpWIIl and an hpterm window), copy
sys. xllstart from the /usr/lib/Xll directory to your home directory.

cp /usr/lib/Xll/sys.xllstart $HOME/.xllstart [Return)

This gives you a read-only copy of .xllstart. You must make the .xllstart
file writable so that you can modify it. To do this type, the following
command:

chmod u+~ .xllstart [Return]

This will enable you to change the clients that start in your environment
without affecting the environments of other users on the system.

If you accidentally ruin the . xllstart file during the editing process, you can
always make a fresh copy from /usr/lib/Xll/sys .xllstart and begin the
editing process again.

Customizing Your Local X Environment 5-11

Viewing X11 Start Error Messages

The x11start command records any messages that occur as XII starts.
Viewing these messages is an important tool for finding errors in your
configuration files. The start command puts messages in the .x11startlog file
in your home directory.

If you start XII and your environment displays as expected, no error messages
will be generated and .x11startlog will be empty.

However, at some point you may start XII and your environment does not
display as expected. For example, maybe one of your terminal windows doesn't
display. To view any error messages that occurred, type the following at the
command-line prompt in your home directory:

more .x11startlog ~

Any error messages in the file will be listed on the screen and, although
decidedly cryptic in nature, they at least provide a starting place for locating
the cause of the error.

Starting a Different Window Manager

The OSF /Motif Window Manager is the default window manager of your X
Window System. However, two other window managers are included with the
X Window System- hpwm (HP Window Manager) and uwm. The differences
among the three window managers are covered in appendix A.

To use the hpwm or uwm window manager instead of the OSF /Motif Window
Manager, follow these steps:

1. Start your text editor and open the .x11start file.

2. Scroll down or search for the line that reads as follows:

mwm $~ t • Start the OSF/Motif Window Manager

3. Comment out this line by typing a I and a space in the left margin.

4. On a new line at the same location, type one of the following commands:

hpwm $~ t I Start hpwm window manager

uwm $G t. Start uwm window manager

5-12 Customizing Your Local X Environment

5. Save the file and exit the editor.

To put the hpwm or uwm window manager into effect, exit the X Window
System by pressing (CTRL) (Left Shift) (Reset). Then restart the window system
again.

Starting Programs Automatically

If you'd like to start more than mwm and a single hpterm window when you
start XII, you need to add a few more lines to your .xl1start file-one line
for each client or non-client you want to start.

Syntax and Examples

The syntax for starting a program automatically matches the syntax for
running the program from the command-line prompt:

client [- options] [&]

Starting Clients

Follow these steps to add other clients to your XII environment:

1. Start your text editor and open .xllstart.

2. Scroll down or search for the line that reads as follows:

hpterm -C -geometry 80x24+1+1 $@ &

3. On the lines below this, insert command lines for each client you want to
start, one client per line.

4. When you're finished, check your syntax and spelling. If all is correct, save
the file and exit the editor.

For example, the following two lines start a clock and an hpterm window as
part of the initial X environment:

xclock -digital -update 10 -geometry 160x30-1+1 &
hpterm -geometry 80x24-1-1 &

The first line adds a 160x30 pixel digital clock to the upper right corner of
the screen. The clock is updated every 10 seconds. The second line starts an
80 column by 24 line hpterm emulation window in the lower right corner of the

Customizing Your Local X Environment 5-13

screen. Both clock window and hpterm window are the default colors specified
in .Xdefaults or /usr/lib/Xll/sys.Xdefaults.

Note that both lines end with an ampersand ("), telling the system to start
these clients as background processes. Note also that the geometry dimensions
of clients like the clock are in pixels; however, the dimensions of terminal
windows are in columns (characters across) and lines (characters down).

Starting Non-Clients

Starting non-clients (commands or programs) automatically is similar to
starting clients. Follow these steps to add non-clients to your XII environment:

1. Start your text editor and open . xllstart.

2. Scroll down or search for the line that reads as follows:

hpterm -C -geometry 80x24+1+1 $0 "

3. On the lines below this, insert command lines for each non-client you want
to start, one non-client per line. Remember that a non-client, because
it does not create its own window, is started by the -e option (e for
"execute") from an hpterm or xterm window.

4. When you're finished, check your syntax and spelling. If all is correct, save
the file and exit the editor.

For example, the following two lines start mailx, an electronic mail program,
and login to a remote host, hpcvf aa:

hpterm
hpterm

-e mailx "
-e rlogin hpcvfaa

Both windows that contain the two non-clients are the default size and colors.
Notice also that, in this example, they are both at the default location, so
first one appears and then the other appears right over it-usually not the
best practice. A better way is to include a geometry option for one or both
windows. Another alternative is to use a -iconic option for one window:

hpterm
hpterm

-iconic -e mailx "
-e rlogin hpcvfaa "

This modified example starts the mailx window as an icon. Only when you
want to read mail do you need to change the icon into a window.

5-14 Customizing Your Local X Environment

Discovering Your Options

The following tables repeat the client option information from chapter 4 so you
can avoid excessive page churning caused by flipping back and forth.

Table 5-6. Color Options for Viewable X11 Clients

Option Descriptions XII Clients

To change this ... Use this option ... hpterm xterm xclock xload

Foreground color. -fg color V V V V
Background color. -bg color V V V V
Cursor color. -cr color V V
Pointer color. -ms color V V
Clock hands color. -hd color V
Hand edge color. -hI color V V

Customizing Your Local X Environment 5-15

Table 5·7. Other Options for Viewable X11 Clients

Option Descriptions XII Clients

To change this ... Use this option ... hpterm xterm xclock xload

Client location. -geometry wxh±col±row J J J J
Font Displayed. -in font J J J J
Update interval. -update number J J
Clock chime. -chime J
Analog clock. -analog J
Start a program. -e command J J
Name of icon. -n name J J
Title of window. -title title J J
Window name. -name name J J J J
Start client as icon. -iconic J J J J
Where client displays. -display host:display.screen J J J J

You can control the size and location of each viewable client you add to your
.xllstart file using the -geometry option. If you don't specify a -geometry
option, the client appears in the default size and at the default location.

The syntax of the -geometry option is as follows:

-geometry widthxheight[±x±y]

The size (widthxheight) is in characters by lines for terminal windows, and in
pixels for clocks and load histograms. The location (±x±y) is in pixels and
depends on the resolution of your screen. Plus values (+) start at the upper
left corner of the screen and proceed down and to the right. Minus values (-)
start at the lower right corner of the screen and proceed up and to the left.

The following table lists some typical locations for a 1280x 1024 high-resolution
display,

5-16 Customizing Your Local X Environment

Table 5-8. Sample Locations for an 80 x 24 X11 Terminal Window

To position a window here ... Use this location ...

The upper left corner of the root window. +1+1

The lower left corner of the root window. +1-1

The upper right corner of the root window. -1+1

The lower right corner of the root window. -1-1

The left side at mid-window. +1+512

The right side at mid-window. -1+512

The top of the root window and right of center. +635+1

Centered at left. +1+330

Centered at right. -1+330

Centered in the root window. +320+330

The options listed here are some of the more commonly used ones. For a
complete list of options for each client, see that client's pages in the reference
section.

Starting X11 at Login
You can configure your system to start the X Window System at login in two
ways:

• Use the HP-UX SAM program to add a new account to the system, specifying
"XII Windows" at login .

• Edit your existing . login or . prof ile login file to include the xllstart
command.

If your login isn't already configured to start XII automatically, you can edit
your login file to do so. If you are adding a new login to your system, you can
use the SAM program to tell the system you want XII at login.

Customizing Your Local X Environment 5-17

The rest of this section explains how, if you currently have a login on the
system, you can edit your . login or .profile file so that when you log in,
your X environment starts automatically.

Modifying Login Files

Which login file you edit depends on which shell command interpreter you use.
If you use the C shell, edit . login. If you use the Bourne or Korn shell, edit
.profile.

Finding Out Which Shell You Use

If you are not familiar with which shell you use, type:

en v (Return)

This command lists your environment variables. Look for the one named
SHELL.

Table 5·9. The Environment File for your Shell

Hyou see ... Edit ...

SHELL=/bin/csh .login

SHELL=/bin/sh .profile

SHELL=/bin/ksh .profile

Editing the File

Once you have determined the proper login file to edit, use vi or some other
editor that produces text files to make the following modification to the bottom
of the file.

If you use the C shell, follow these steps to modify your . login file:

1. Copy your original . login to . login . old (just in case).

2. Start your text editor and open . login.

3. Page or scroll down to the bottom of the file.

4. Insert the following lines at the bottom of the file:

5·18 Customizing Your Local X Environment

if (lI'who am i I grep console'll != 1111) then
exec /usr/bin/xllstart

endif

5. Save your edited file and exit the text editor.

If you use either the Bourne or the Korn shell, follow these steps to modify
your .profile file:

1. Copy your original . prof ile to . prof ile . old (just in case).

2. Start your text editor and open .profile.

3. Page or scroll down to the bottom of the file.

4. Insert the following lines at the bottom of the file:

if [II 'who am i I grep console'll 1- 1111]

then
exec /usr/bin/xllstart

fi

5. Save your edited file and exit the text editor.

These lines verify that you are logging in from the console, and not from
a remote location, before starting XII on your system. This avoids the
possibility of undesirable effects caused by inadvertently starting X on your
system from a remote login.

Viewing the Result of Your Edit

To view the result of your edit, exit the X Window System by pressing (CTRL)

(Left Shift) (Reset) simultaneously. Remember to use the left (Shift) key.

When the command-line prompt returns to the screen, you can either log out
and then log back in, or type source .login (if you use the C shell), or type
.. profile (if you use the Korn shell or Bourne shell) to restart XII.

After a few seconds, your system should start the X Window System. From
then on, whenever you login, Xl1 will start automatically.

Customizing Your Local X Environment 5-19

Using the 'SAM' Program

You can also start the X Window System automatically for a new user by
adding the user with the SAM program.

Before you run SAM, you must be superuser. As one of the options of "Add a
new user", select the X Window System to start at login.

Creating Custom Bitmaps with 'bitmap'
Using the bitmapclient, you can create your own custom bitmaps and use
them to tile your root window, to customize root-window cursor shapes, or to
customize menu selections.

Syntax and Options

The syntax for bitmap is as follows:

bitmap

-help

-display

-geometry

-help
-display host:display.screen
- geometry wx h± col± row
-no dashed
-fn font
-fg color

filename Widthx Height

-bg color
-hI color

-ms color

-name name

Prints a summary of the command usage.

Specifies the screen where bitmap is to appear.

Sets the size of the bitmap window to the specified
widthxheight and locates the window at the specified column
and row.

5-20 Customizing Your Local X Environment

-nodashed

-fn

-fg

-bg

-hI

-ms

-name

filename

Specifies the bitmap grid should use solid lines.

Specifies the font to use in the bitmap command panel labels.

Specifies the foreground color.

Specifies the background color.

Specifies the color of the highlight used to mark the center of a
circle (the hot spot) and move areas.

Specifies the color of the pointer.

Specifies a variable name to use when writing to a bitmap file.

Specifies the name of the bitmap file to open or create.

WidthxHeight The size of the bitmap itself. Width and height are measured
in pixels with one pixel equal to one cell on the bitmap grid.

Using 'bitmap'

The bitmap client displays a variable-size grid, a command panel (on the
right), and two "preview" bitmaps. You operate bitmap by using mouse
buttons to "draw" pixels in the grid, one pixel per cell, and by making
selections from the command panel. The preview bitmaps enable you to see
how your art work looks in regular and reverse video.

Customizing Your Local X Environment 5-21

I CoPY Area I
I Move Area I
IOverlay Area I

I line
I Circle I
I Filled Circle I

I Flood Fill I

Figure 5-1. The 'bitmap' Client Creates Custom Bitmaps

Currently, bitmap uses the button definitions in the following table:

Table 5-10. Mouse Button Definitions for 'bitmap'

If you see ... On a 2-button mouse press ... On a 3-buttOll mouse press ...

Button 1 The left button. The left button.

Button 2 Both buttons simultaneously. The middle button.

Button 3 The right button. The right button.

5-22 Customizing Your Local X Environment

The following table shows how to use the grid portion of the bitmap window:

Table 5-11. How to Use the 'bitmap' Grid

H you want to ... Do this ...

Draw a pixel. Change a cell from background to Click button 1 on the cell.
foreground color.

Invert a pixel color. Change a background colored Click button 2 on the cell.
cell to foreground or a foreground colored cell to
background.

Clear a pixel. Change a cell to the background color. Click button 3 on the cell.

The following table shows how to use the command panel portion of the
bi tmap window:

Customizing Your Local X Environment 5-23

Table 5-12. How to Use the 'bitmap' Command Panel

If you want to ... Click button 1 on ...

Set (clear) all cells of the grid to the background color. Clear All

Set all cells of the grid to the foreground color. Set All

Set all background colored cells to foreground and all Invert All
foreground colored cells to background.

Set (clear) an area of the grid to the background color. Clear Area.

Set an area of the grid to the foreground color. Set Area.

Set any background colored cells in an area of the grid Invert Area
to foreground and any foreground colored cells in that
area to background.

Copy one area of the grid to another. Copy Area

Move an area of the grid to another position. Move Area

Place one area of the grid over another. Overlay Area

Draw a line between two points. Line

Draw a circle with a given center and radius. Circle

Draw a filled (foreground colored) circle with a given Filled Circle
center and radius.

Fill an enclosed (bounded) area. The area must be Flood Fill
completely enclosed.

Set a "hot spot" to mark the location of the cursor on a Set HotSpot
cursor bitmap.

Erase a "hot spot" from a cursor bitmap. Clear HotSpot

Save the bitmap to the file specified on the bitmap Write Output
command line.

Exit the bitmap client. Quit

5-24 Customizing Your Local X Environment

Examples

The following examples illustrate some of the possibilities when creating
custom bitmaps with bitmap.

Creating an Icon Image

You can create a 50 by 50 pixel icon image that you can use for a particular
client such as hpterm windows. The following bitmap is one example:

Invert All

Clear Area I
Set Area I

I Invert Area I

I CoPy Area I
I Move Area I
IOverlay Area I

line

I Flood Fill I

I Write Output I
I Quit I

Figure 5-2. A Custom Icon Bitmap

Customizing Your Local X Environment 5-25

If you name this bitmap "peacock.bits" and keep it in the -/bits directory,
where - stands for the path to your home directory, you can use the bitmap as
an image for hpterm icons by inserting a line similar to the following in your
. Xdefaul ts file:

Mv.m*HPterm*iconlmage: -/bits/peacock.bits

Whenever you iconify an hpterm window, your peacock will appear as the icon.

Creating Root Window Tiles

You can create tiles of any size with which to pattern your root window. One
such pattern is the following:

5-26 Customizing Your Local X Environment

Clear AU
Set AU

Invert All

Clear Area

Gopy Area
Move Area

D
-

Figure 5-3. A Custom Bitmap for That Spacious Look

This pattern, called for lack of a better name "space. bits," is a random pattern
of foreground-colored pixels. Using the xsetroot client described shortly, you
can use this bitmap for a truly cosmic effect.

Creating Custom Cursors and Masks

Creating a custom cursor (pointer) requires you to make a cursor bitmap and
a cursor mask bitmap. The mask provides a background for the cursor and
prevents the pixels over which the cursor moves from showing through the
cursor bitmap.

Customizing Your Local X Environment 5-27

For example, because the preceding example gave you some space to play with,
you might want to create the following cursor, named "shuttle.bits," to help
you get from window to window.

Clear All I
Set All I.,

Invert All I

Clear Area I
Set Area I

I Invert Area I

I CoPy Area I
I Move Area I
I Overlay Area I

line I
..... : 1 : j :1 Circle I
c ••••• ; ••••• ;, ; ••••• ; •••••• , I Filled Circle I

+-I··· .. t·· .. ·I···+····I .. ···f· .. +-+···+·+··+-+··· .. I-··+·····1·· .. +·+·+ .. ·+··+····1·····+·····1·····+·····1·····+···-+ .. ·+·····I .. ···'~

I Flood Fill I

I Set HotSpot I
IClear HotSpot I

I Write Output I
I Quit I

Figure 5-4. A Custom Cursor for Navigating Large Spaces

Note the hotspot at the tip of the shuttle's nose. A hotspot is the single pixel
that has been designated as the "point" of the pointer.

The following mask, "mask.bits," is made by inverting the original cursor and
adding a few extra lines for shading:

5-28 Customizing Your Local X Environment

Invert All

Clear Area
Set Area

, Flood Fill

, Set HotSpot I
, ; + .. .;.;;. ; ; + ;;. ; f + , 'Clear HotSpot I

.... ·; .. · .. , ·;· .. ,+ i·;. .. +· .. ·; · + ···; .. ·+ .. ·+ · .. ; · ... , .. ;· ·; ·;. .. +· .. .;. .. · ·'1 Write Output I
, Quit I

Figure 5-5. A Custom Mask for Navigating Large Spaces

You employ your custom cursor and mask bitmaps using the xsetroot client
descri bed next.

Customizing Your Local X Environment 5-29

Customizing the Root Window with 'xsetroot'
The xsetroot client enables you to customize the appearance of the root
window. You can add color and pattern to the root window, or modify the
shape of the cursor when it's in the root window.

Syntax and Options

The xsetroot client has the following syntax:

-help
-def
-cursor path/cursor path/mask
-bitmap path/bitmap
-mod x y

xsetroot -gray

-help

-def

-cursor

-bitmap

-mod

-gray

-fg

-bg

-fg color
-bg color
-rv
-solid color
-display host:display.screen

Prints a summary of the command usage.

Resets unspecified root window attributes to their default
values.

Specifies the cursor bitmap and mask bitmap to use for the
root window cursor.

Specifies a bitmap file with which to tile the root window.

Specifies a modular grid of dimensions x by y in the foreground
color, making a plaid pattern.

Specifies gray (or grey) for the color of the root window.

Specifies color as the foreground color.

Specifies color as the background color.

5·30 Customizing Your Local X Environment

-rv

-solid

-display

Examples

Swaps foreground and background colors.

Specifies the root window should be colored a solid color.

Specifies the host, display number, and screen number of the
root window to change.

The following examples employ the bitmaps created in the last section.

Changing the Root Window Tile Pattern

To change the tile pattern of the root window to a bitmap such as the
"space.bits" bitmap, use the following line:

xsetroot -bitmap -/bits/space.bits

This line assumes that you keep your bitmaps in a subdirectory of your home
directory called bitmaps. The actual xsetroot command can be issued either
from the command line once you've started X or from a line in your .xllstart
file (in which case the changes are made as XII starts).

Changing the Root Window Cursor

To change the shape of the root window cursor to a bitmap such as the
"shuttle.bits" bitmap created above, use the following line:

xsetroot -cursor - fbi ts/ shuttle . bits - fbi ts/mask . bit's

Again, you can issue this line either at the command-line prompt once you've
started X or include it as part of your .xllstart file. Remember, the -
signifies the path to your home directory.

Customizing Your Local X Environment 5-31

Working with Fonts
The X Window System includes a variety of fonts. A font is a type style, that
is, a style in which text characters are printed. For example, the text of most
newspapers is printed in the Times Roman font, while the headlines are usually
printed in Helvetica.

What Fonts are Available?

Fonts are stored within subdirectories of the /usr/lib/X11/fonts directory, as
shown in the following diagram.

--I 75dpi I
i so_8859. 1 I I 100dpi I

lusrl 1 i b/X 111 f ontsl - hp_roman81 ----I 75dpi I

-l variable.scf
miscl fixed.scf

cursor.scf

(NL/IO Font Directories)

Figure 5-6. The Font Directory Structure

To view what fonts are available in each directory, type:

Is -p directory (Return)

5-32 Customizing Your Local X Environment

Note

II
The examples in this section use fonts from the
/usr/lib/Xll/fonts/hp_roman8/ directory, which was
installed with the fileset Xll_FONTA. If you do not have this
directory, these examples will not work for you as written.
Find the font directory you do have, and use names from that
directory instead.

Specifying a Font

Whenever a command or client option calls for fontname, you may refer to the
font in either of two ways:

• Specify the font's characteristics .

• Provide an "alias" for the font.

Font Characteristics

You may refer to a font by specifying a list of its properties. Any property in
the list can be replaced by "*" wild card. Any character in a property can be
replaced by a "?" wild card. The server will neither accept nor reject a font
based on a particular property if that property is specified by a wild card.

The form of the property string specification is:

II FontNameRegistry- Foundry- FamilyName- WeightName-Slant
- SetwidthN ame-AddStyleN ame- PixelSize- PointSize- ResolutionX
- Resolution Y- Spacing- Average Width- CharSetRegistry - CharSetCoding"

FontN ameRegistry

Foundry

FamilyName

Weight Name

Slant

A string that defines the authority that registered the
font.

A string giving the name of the foundry or font
designer.

The trademarked commercial name of the font

A string describing the relative weight of the font, such
as bold. For human reference only.

A code indicating whether the font slants to the right,
left, or not at all.

Customizing Your Local X Environment 5-33

SetwidthN arne

AddStyleN arne

PixelSize

PointSize

ResolutionX
Resolution Y

Spacing

AverageWidth

CharSetRegistry

R Roman

1 Italic

0 Oblique

RI Reverse italic

RO Reverse oblique

A string describing the width-per-unit of the font, such
as compressed or expanded.

A string describing anything else needed to uniquely
identify the font, such as serif or cursive. Human
reference only.

An integer describing the size of an EM square. An EM
square is the size of a box surrounding an M.

An integer giving the EM square size in points (72.27
points = 1 inch)

The horizontal (X) and vertical (Y) resolution of the
device that the font was designed for, measured in
pixels-per-inch.

A code indicating the spacing between units in the font.

M Monospaced (fixed pitch)

P Proportional spaced (variable pitch)

C Character cell. The glyphs of the font can be
thought of as "boxes" of the same width and
height that are stacked side by side or top to
bottom.

An integer string giving the average, unweighted
width of all the glyphs in the font, measured in 1/10th
device-dependent pixels.

A string identifying the registration authority that
registered the specified CharSetEncoding. This is
typically the organization and a specific standard
number, such as IS08859 or HP.

5-34 Customizing Your Local X Environment

3

Char8etEncoding

For example:

A string identifying the character set fa the specified
registry. For example, if Char8etRegistry is 1808859,
then Char8etEncoding "4" identifies the 1808859.4
character set. If Char8etRegistry is "HP", then
Char8etEncoding "roman8" identifies the HPROMAN8
character set.

-adobe-courier-bo1d-o-normal--10-100-75-75-m-60-hp-roman8

specifies a courier, bold, oblique font created by Adobe. The font is 10 pixels
tall, 100 tenths of a point tall on a 75dpix75dpi display. Characters are
monospaces, and are an average of 60 tenths of a point wide. Fonts codes are
based on the HPROMAN8 encoding.

You may use either upper-case or lower-case letters when you specify a
characteristic.

The 'fonts.dir' File

The server associates the font file name and the font property string by means
of the fonts. dir file. This file is created by the font installation process or by
executing the mkfontdir utility.

You can view the font characteristics for all the fonts in the directory by
typing:

more font directory/fonts. dir (Return)

If you specify a font using wild cards (* or ?), the server will select the first
font in fonts. dir that matches the properties that you did specify.

For example, if your fonts. dir file looked like this:

he1v008.scf -Adobe-He1vetica-Medium-O-Normal--8-80-75-75-P-47-HP-ROMAN8
he1vB008.scf -Adobe-He1vetica-Bo1d-O-Normal--8-80-75-75-P-48-HP-ROMAN8
he1vR08.scf -Adobe-He1vetica-Medium-R-Normal--8-80-75-75-P-46-HP-ROMAN8

then if you ask for

II * - * - H e1 vet i c a - M edi urn - * - * - * - * - * - * - * - * - * - HP - ROMAN 8 - * II

Customizing Your Local X Environment 5-35

the first font, hel vOOB. sef, will be used.

After the fonts. dir file is created or updated, run the following command to
inform the server of the change:

xset fp rehash [Return]

Font Aliases

A font can be referred to by an alias. The alias is shorter and easier to
remember (and type) than the complete font description., Aliases are found in
the fonts. alias file for each directory. A simple fonts. alias file is created
as part of installing the font.

The fonts. alias file provides for two types of aliases:

• File name.

If the string "FILE_NAMES_ALIASES" occurs in the fonts. alias file, then
the font can be referred to by its file name alone, without the path name or
extensions (. snf for server natural format or . sef for server compressed
format).

Although font names have extensions, usually a . snf (server natural format)
or . sef (server compressed format), you don't have to type the extension
when you specify a font.

• A name you select.

You can specify what alias to use for referring to a font. This helps
avoid confusion if you are using fonts with the same name from different
directories. You provide the alias name you want to use and the font
property string, as shown in the following example.

If this is the fonts. alias file in your /usr/lib/Xll/fonts/hp_roman8/75dpi
directory,

"FILE_NAMES_ALIASES"
eourbold *-adobe-eourier-bold-r-normal-*-B-BO-75-75-m-50-hpB-romanB

then you can refer to the font named eourBOB. sef in any of the following
ways:

• eourBOB

5-36 Customizing Your Local X Environment

The "FILE.-NAMES.ALIASES" entry lets you use just the file name.

• courbold

The alias name you specified.

• *-adobe-courier-bold-r-normal-*-8-80-75-75-m-50-hp-roman8

You can always specify the font characteristics, whether or not you have a
fonts. alias file.

• *-*-courier-bold-r-normal-*-8-*-*-*-*-*-hp-roman8

You can specify enough of the font characteristics to identify the font
characteristics you want, and have the rest as wildcards. XII selects the first
font in its search path that matches the specification.

Changing the Alias Search Path

When you specify a font by its alias, by default the server searches the
following directories until it finds a match for the alias in one of the directories.

/usr/lib/Xll/fonts/hp_roman8/75dpi
/usr/lib/Xll/fonts/iso_8859.1/75dpi
/usr/lib/Xl1/fonts/iso_8859.1/100dpi
/usr/lib/Xll/fonts/misc
/usr/lib/Xll/fonts/hp_kana8
/usr/lib/Xl1/fonts/hp_japanese/75dpi
/usr/lib/Xll/fonts/hp_korean/75dpi
/usr/lib/Xll/fonts/hp_chinese_s/75dpi
/usr/lib/Xll/fonts/hp_chinese_t/75dpi

When the server starts, if any of these directories do not exist, or if a directory
does not contain a fonts. dir file, that directory is removed from the server's
default search path until the server is restarted.

You can check your current font search path by typing:

xset q (Return)

You can change the directories to be searched by using the xset client. (This
section covers only the font functions of xset, chapter 7 explains the other
functions.)

Customizing Your Local X Environment 5-37

xset

-fp/fp-

+fp/fp+

fp= path

fp default

fp rehash

q

-fp path[,path .. .}
fp- path[,path ... J
+fp path[,path ... J
fp+ path[,path ... J
fp default

fp rehash

fp= path ['path .. .J
q

Removes the specified directories from the head (-fp) or tail
(fp-) of the font search path.

Prefixes (+fp) or appends (fp+) the specified directories to the
font search path.

Specifies the font search path.

Restores the default font search path.

Causes the server to reread the fonts databases in the current
path -done after new fonts are added or deleted, or after
mkfontdir is run.

Display status information, including the current font search
path.

Adding or Deleting Fonts

If you add one or more fonts to a directory or delete them from a directory:

1. Run the mkfontdir utility program in the directory to which the fonts were
added or deleted to update the fonts. dir file.

2. Edit the fonts. alias file if you want to refer to the font by an alias.

3. Inform the server of the change by typing:

xset fp rehash (Return)

5-38 Customizing Your Local X Environment

Choosing Where to Specify a Font

Usually, you specify fonts in the .Xdefaults file in your home directory.
However, you can specify the font of an individual client (such as the text of
a single window) in the command line that starts the client. If you start the
client when you start XII, the command line will be in the . xl1start file. If
you start the client from a menu, the command line will be in the . mwmrc file.

Making All Instances of a Client Have the Same Font

By inserting a command line in the .Xdefaults file in your home directory,
you can make every instance of a particular client have the font that you
specify.

The syntax for the line is as follows:

client*fontresource: fontname

The following line in your. Xdefaul ts file changes the font of every hpterm
window to the monospace font courB08. scf .

HPterm*font: courB08

Of course, you can refer to fonts in any of the ways discussed earlier in this
chapter. This example uses the file name as an alias.

If you specify a font for the mwm window manager, use the fontList resource.
For example:

Mwm*fontList: courB08

Specifying the Font of a Window that Starts Automatically

The following line, which uses the standard command-line syntax, in your
.xl1start file overrides any font specification in the .Xdefaults file and
creates this particular hpterm window using a font with the alias courB08:

hpterm -fn courB08 &

Specifying the Font of a Window that Starts from a Menu

The following line, which uses the standard menu selection syntax, in your
.mwmrc file overrides any font specified in the .Xdefaults file and, when you

Customizing Your Local X Environment 5-39

choose the New Window selection from the menu, creates an hpterm window
using a font with the alias courB08:

"New Window" f.exec "hpterm -fn courB08 &fI

Displaying a Font with 'xfd'

You can display the complete character set of any valid X Window System font
using the xfd client.

Syntax and Options

The syntax for xfd is as follows:

xfd

-rv

-fg

-bg

-bf

-tl

-rv
-fg color
-bg color
-bf font
-tl title
-in 'lCon

-fn fontname
-icon path/bitmap

-verbose

-gray
-start charnumber
-geometry parameters
-display host:display.screen

Switches the foreground and background colors (reverse video).

Specifies the foreground color for xfd.

Specifies the background color for xfd.

Specifies font as the font to use for displaying messages at the
bottom of the xfd window.

Specifies title as the title that should appear in the title bar of
the xfd window frame.

5-40 Customizing Your Local X Environment

-in Specifies icon as the name to use for the icon label when an
xfd client is iconified.

-icon Specifies the path and filename of the bitmap to use as the icon
for the xfd client.

-verbose Displays additional information about a character including:
left bearing, right bearing, ascent, descent, and width.

-gray Specifies a gray background.

-start Specifies that character number charnumber should be the first
character displayed (the character in the upper left corner).

-geometry Specifies the size (width X height) and location (±column±row)
of an xfd window.

-display Specifies the host, display number, and screen number on
which to display xfd.

-fn fontname Specifies the font to display. If an invalid name, or no specified,
you get a "usage" message.

Using 'xfd'

The xfd client creates a 16 by 16 grid by default, but you can change the size
using the -geometry option. Each cell of the grid, starting at the upper left
corner, contains a character of the font named on the command line.

Currently, xfd uses the button definitions in the following table:

Table 5-13. Mouse Button Definitions for 'xfd'

If you see ... On a 2-button mouse press ... On a 3-button mouse press ...

Button 1 The left button. The left button.

Button 2 Both buttons simultaneously. The middle button.

Button 3 The right button. The right button.

Customizing Your Local X Environment 5-41

Use the following actions to operate the xfd client:

Table 5-14. Using the 'xfd' Client

If you want to ... Do this ...

Page forward to see characters from the Position the pointer on the xfd window
specified font that are not currently and click button 3.
displayed.

Page backward to see the previously Position the pointer in the xfd window
displayed characters. and click button l.

Display the character set starting with a Use the -start charnumber option on
particular character. the command line when you start xfd.

Show the decimal and hexadecimal value Position the pointer in the grid for that
of a character. character and click button 2.

Show additional information about a Use the -verbose option on the
character set including left bearing, right command line when you start xfd.
bearing, ascent, descent, and width.

Example

The following command line starts an xfd window displaying a font wi&h the
alias courBOlO in verbose mode. The name of the font appears as a reminder
in the title bar.

xfd -verbose -tl courB014 -geometry 300x300-1-1 -fn courB014 & [Return)

The window has a 300 by 300 pixel size and appears in the lower right corner
of the screen. Remember, you can use the full font specification, rather than
the alias as shown in the exam pIe.

5-42 Customizing Your Local X Environment

The result of issuing this command line is as follows:

character # = 36 (Ox24):
left bearing = 1, right bearing = 9
ascent = 10, descent = 2
width = 9

Figure 5-7. CourB010 Character Set

You can display information about a character by positioning the pointer on
that character and clicking button 2. The figure above shows information for
the $ character (charnumber = 36) at the bottom of the window.

If the information is too large to be shown in the geometry you specified, you
can see other "pages" by positioning the pointer anywhere in the window and
clicking button 3.

Customizing Your Local X Environment 5-43

Using Remote Hosts
Part of the potential of the X Window System is that it enables you to be in
two places at once-sort of. You can be logged into your local system working
locally and, at the same time be logged into one or more remote hosts.

Gaining Access to Remote Hosts

To gain access to a remote host, you must have the following:

• The address and host name of the remote host listed in your system's
/ etc/hosts file.

• A valid login (username and password) and home directory on the remote
host.

To run clients on the remote system and have them display on your local
system:

• The hostname of the remote host listed in a / etc/XO. hosts file on your
system.

To move files between systems:

• Your system listed in a .rhosts file in your home directory on the remote
host.

• The hostname of the remote host listed in a . rhosts file in your home
directory on your local $ystem.

Setting Up a Login on a Remote Host

To set up a login on a remote host, you need to check that the remote host has
a valid internet address and hostname in your system's / etc/hosts file, the file
that tells the system the address of the other systems on the network.

Also, you need to talk to the system administrator for the remote system. You
will need a username, password (if necessary), and a home directory on that
system. That way, when you log into the remote host, the remote host will
know who you are and where you belong in the directory structure.

5·44 Customizing Your Local X Environment

Setting Up an 'XO.hosts' File

The r~mote host must have permission to connect to your display server
and display a client program. It gets this permission by being listed in the
letc/XO.hosts. file on your system. The XO.hosts file is an ASCII file that
contains the hostnames of all remote hosts that have permission to use your
server to display clients on your display screen. Each hostname occupies a
separate line as follows:

hostJ
host2
hostS

You can create the file for yourself using any ASCn text editor, or you can use
the xhost client described below to dynamically add or delete hosts. Changes
made with xhosts are in effect only for the length of your X session.

Note that the "Q" of XO.hosts signifies a particular display (combination of
screen, keyboard, and mouse) on your system, This. is typically the console.
If you have another display configuration, you may need another host file.
For example, if you are the second display on a system, your host file would
probably be Xl.hosts. A "display" can be either physical (for example, display
o could correspond to seat 0) or "logical" (for example, if you switch between
several configurations" your display could have sevexallogical display numbers,
one for each different configuration). For more information, see chapter 7.

Preparing a '.rhosts' File

A . rhosts file, placed in your home directory, enables any remote host listed in
the file to connect to your system using your login account without having to
go through the drudgery of formally logging in and giving a password.

Although this may be convenient to you, it may present an undue opportunity
to someone else.

Note

"
Depending on your situation, a . rhosts file could undermine
the security of your system and other systems on the network.
Check with your system administrator and analyze the security
needs of your situation to develop an appropriate plan.

CLJstQmi~ing Vo~r l,Qc~1 X Envifonment ~~45

The . rhosts file is an ASCII file containing one remote host per line as in the
following syntax:

hostl [user}
host2 [user}
host* [user}

To create a . rhosts file, you should be in your home directory. Use the
following steps:

1. Start your editor and open a file called . rhosts.

2. Type the name of the remote host that you want to add.

3. Press (Return) to move to the next line.

4. Repeat steps 2 and 3 for each remote host you want to add.

5. Check your spelling, save the file, and exit your editor.

If the user name is not included on the same line as the host name, the
. rhosts file assumes that your remote user name is the same as your local user
name.

Adding and Deleting Hosts with 'xhost'

The xhost client provides you with a convenient way to dynamically control
access to your local system. Using xhost, you can add or delete a remote
host's permission to access your local XII display server.

N ate that xhost only adds or deletes a remote host to or from an internal list
created at the start of an X session. It does not change the / etc/XO. hosts
file. To permanently add or subtract access permission you must edit the
/ etc/XO. hosts file using an ASCII text editor such as vi.

Syntax and Options

The syntax for xhost is as follows:

5-46 Customizing Your Local X Environment

[+] host
-host

xhost +

host

+host

-host

+

no option

(no option)

Adds host to the list of remote hosts with permission to access
your local X server.

Adds host to the list of remote hosts with permission to access
your local X server.

Deletes host from the list of remote hosts with permission to
access your local X server.

Turns off access control, allowing any remote host to access
your local X server.

Restricts access to your local X server to remote hosts
currently listed in your local / etc/XO . hosts file.

Prints the list of remote hosts that currently have access to
your X server.

You can run xhost from the command line at any time you need to change
access to your server or to see the current list of remote hosts with access to
the server. Remember, changes you make using xhost are temporary. They
last only as long as your current X session.

Example

The following exam pIe allows the remote host hpcvf gg to access your local
display. As soon as you quit the window system, the access permission is
revoked.

xhost +hpcvfgg ~

Customizing Your Local X Environment 5-47

Starting Programs on a Remote Host

The "Starting Programs" section of chapter 4 covered starting remote clients
and non-clients from the command line. You can, however, start remote
programs without typing a lengthy command after the command-line prompt.

Starting a Remote Program when you start X11

One way to start a remote program, either a client or non-client, is to start
the program when you first start XII. This enables you to have the remote
program as a part of your initial environment.

To start a remote client when you start XII, you need to edit the . xl1start
file in your home directory to include one line for each remote client you want
to start. The lines are similar to the following:

remsh host -n /usr /bin/Xll/ client -display host:display.screen [Be]

Here host is the name of the remote host. The client can be any X client. And
the -display option specifies the system, display number, and screen number
where the client is to display, typically your local system.

To start a remote non-client when you start XII, edit your . xllstart file
to include one line for each remote non-client. The line begins by starting a
remote shell (remsh), then a terminal emulation window in which to run the
non-client, and finally the non-client:

remsh host -n /usr/bin/Xl1l/hpterm -display host:display.screeri -e
non-client [Be]

The -e option ("e" for execute), when used with an hpterm or xterm client,
executes a command, in this case the non-client.

Note that an alternate syntax is to start an hpterm window and use the -e
option to execute a remote login (rlogin) that makes the window a terminal of
the remote host.

For example, the following lines start a remote login (non-client) and a remote
load histogram (client) on the host hpcvfaa and display the results on the
console of the local system, hpcvfbb:

remsh hpcvfaa -n /usr/bin/Xll/xload -display hpcvfbb:O.O Be

hpterm -title IIhpcvfaa login" -e rlogin hpcvfaa Be

5-48 Customizing Your Local X Environment

Starting a Remote Program from a Menu

Starting a remote program from a menu requires editing the . mwmrc to include
the proper line to start the program. The process is similar to starting the
program from .xiistart.

Use a line similar to the following to start a remote client:

selection f. exec "remsh host -n lusr/bin/Xlil client -display h:d.s &;"

To start a remote non-client, use the above syntax, adding a -e option as the
last option before the ct. Alternately, create an hpterm window and use -e
rlogin host to start a remote login.

The explanation of this syntax is the same as the syntax used in .xiistart
with the exception of selection, the selection that appears on the menu, and
f . exec, the OSF /Motif Window Manager function that starts a process, in this
case an hpterm window.

Example

The following example starts a login on remote host hpcvf aa. The login
process is initiated by choosing the "hpcvfaa Login" selection from the root
menu.

Root Menu Description
Menu DefaultRootMenu
{

"Root Menu"
"New Window"
"hpcvfaa Login"
"Shuffle Up"
"Shuffle Down"
"Refresh"
no-label
"Restart"
}

f.title
f.exec "hpterm &;"
f.exec "hpterm -e rlogin hpcvfaa ct"
f.circle_up
f.circle_down
f.refresh
f.separator
f . restart

Customizing Your Local X Environment 5-49

Where To Go Next
This chapter has discussed customizing the operation of your window system
environment to suit your personal needs. There is additional customization
that you can perform beyond what was presented here. Some of it is a little
more difficult to comprehend and it would be a good idea to consult with your
system administrator before attempting to implement some of the changes.

If you are satisfied with the current look and performance of your window
system environment, you may want to stop here, use the system for a few days
or weeks, and then perhaps "fine tune" it based on your experience.

On the other hand, if you are interested in more extensive customizations to
the OSF /Motif Window Manager, in special environment configurations, in
printing, or in graphics, you should read chapters 6, 7, 8, and 9 respectively.

If your interest is in programming, turn to one of the programming manuals.

5·50 Customizing Your Local X Environment

6
Managing Windows

Managing windows is the job of the window manager. This chapter begins
by briefly mentioning the clients related to window management. But most
of the chapter discusses the nitty-gritty details of how to use the OSF /Motif
Window 11:anager (mwm), its resonrces, a.nd functions to manage your window
environment.

It is not necessary to read this chapter to use the window manager or X, but
if your management needs go beyond adding and deleting menu selections,
browsing this chapter should prove interesting. After discussing the clients, the
chapter reviews some fa.miliar aspects of window control, but becomes more
technical once these basics ha.ve been covered.

The chapter organjzes window ma.nager resources and functions into the
following task-oriented topics:

• Managing the general appeara.nce of window frames.

• Working with icons.

• Managing window manager menllS.

• Using the lTIOUse.

• Using the keyboard.

• Controlling window size and p1a,cement.

• Controlling resources with foclls policies.

• Adding mattes to client windows.

Managing Windows 6-1

Clients That Help You Manage Windows
Of the clients listed in the reference section of this manual, six are directly
related to window management:

• resize

• xrefresh

• xwininfo

• mwm

.uwm

• hpwm

Resetting Environment Variables with 'resize'

The resize client resets three environment variables: TERM, LINES, and
COLUMNS. This enables a shell to reflect the current size of its window.

Don't confuse resize, the client, with f .resize the window manager function.
The f .resize function changes the size of a window, but does not reset any
environment variables. The resize client, on the other hand, does not change
the size of a window, but it does reset the environment variables. Resetting the
environment variables enables non-client programs to adjust their output to the
window's new size.

When to Use 'resize'

Use resize whenever you resize a terminal emulator window and want a
non-client program running in that window to reflect the window's new
size. The res ize client is typically used as an argument to the HP -UX eval
command.

Syntax and Options

The syntax for res ize is as follows:

6-2 Managing Windows

-c

-h

-s

-u

-x

-e
-h

resize -s [row col]

-u
-x

Resets the environment variables for esh shells.

Uses Hewlett-Packard terminal escape sequences to determine
new window size.

Uses Sun escape sequences to determine new window size. New
row and column sizes are specified with row and col. col

Resets the environment variables for sh and ksh shells.

Uses VTI02 escape sequences to dermine new window size.

Example

To see what the current COLUMN and LINES settings are, type the following
command:

resize (Return)

After you have resized a window either by dragging the window frame or by
choosing the "Size" selection from the window menu, you :f.:a.n reset the LINES,
and COLUMN environment variables to reflect the new window size by issuing
the following comma.nd:

eval 'resize' (Return)

If you find yourself typing the above command too often, you can make things
a little easier on yourself. If you use esh, try using an alias. The following line
in your . eshre file enables you to run res ize by typing xr.

alias xr 'set noglob; eval 'resize"

If you use sh or ksh create an xr function like the following:

xr() {eval'resize';}

Managing Windows 6-3

Repainting the Screen with 'refresh'

The xrefresh client "repaints" the screen or a specified portion of the screen.
It does this by mapping, then immediately unmapping, a window over the area
to be repainted. This obscuring-unobscuring causes the area to be redrawn.
Repainting a screen removes the "graphics litter" that occasionally disfigures a
screen.

The xrefresh client performs a similar task to the f . refresh window
manager function. However, the xrefresh client, because of its options, is
more versatile.

When to Use 'xrefresh'

You can use xrefresh from the command line of any terminal window and,
using the ""display option, you can repaint any display.

Syntax and Options

The syntax for xrefresh is as follows:

xrefresh

-,white

-black

-solid

-root

-none

-geometry

-white

-blaGk

-solid color
-root
-none

-geometry widthx height± column± row
-display host:display.screen

Uses a white window to map the screen.

Uses a blaG~ window to map the screen.

Uses a color colored window to map the screen.

Uses the root window to map the screen,

Uses a transp~rellt Willdow to map the screen (default).

Repaints a widthxheight region located at ±column±row on
the screen (dimensions are in pixels).

6-4 Managing Windows

-display Specifies the screen to refresh.

Example

The following example illustrates using xrefresh from the command line to
repaint the upper left quarter of the screen.

xrefresh -white -geometry 800x400+1+1

Getting Window Information with 'xwininfo'

The xwininfo client is a utility program that displays useful information about
windows.

Syntax and Options

The syntax for xwininfo is as follows:

xwininfo

-help

-id

-name

-help

{ =!:mi: name}
-root

-int
-tree
-stats

{=::;~~:h }
-bits
-events
-size
-WID

-all
-display host:display.screen

Prints a summary of the command usage.

Specifies the target window by window id.

Specifies the ta.rget window by name.

Managing Windows 6 .. 5

-root

-int

-tree

-stats

Specifies the root window as the target.

Displays window information, normally shown as hexadecimal,
as decimal.

Displays ids and names of the root, parent, and child windows.

Displays window id, location, size, depth, and other
information as hexadecimal.

-metric Displays height, width, x and y information in millimeters.

Displays height, width, x and y information in inches, feet,
yards.

-english

-bits

-events

Displays information about bit and storage attributes.

Displays event masks of the target window.

-size

-wm

-all

-display

Displays sizing information about the target window.

Displays the window manager hints for the target window.

Displays all available information about a window.

Specifies the host, display, and screen to target.

Example

This example illustrates the result of issuing the following command:

xwininfo -stats (Return)

Once you issue the command, select a window as the target of your inquiry by
moving the pointer into that window and clicking button l.

xwininfo ==> Window id: Ox200013 (hpcvxRW)
==> Upper left X: 6
==> Upper left Y: 6
==> Width: 484
==> Height: 316
==> Depth: 8
==> Border width: 4
==> Window class: InputOutput
==> Colormap: Ox80065
==> Window Bit Gravity State: NorthWestGravity

6-6 Managing Windows

==> Window Window Gravity State: NorthWestGravity
==> Window Backing Store State: NotUseful
==> Window Save Under State: no
==> Window Map State: IsViewable
==> Window Override Redirect State: no
==> Corners: +6+6 -782+6 -782-694 +6-694
-geometry =80x24+6+6

Managing Windows with the OSFjMotif Window Manager

The OSF /Motif Window Manager (mwm) is an XII client that manages the
appearance and behavior of objects on the root window. You control mwm
and its management operations using a mouse, a keyboard, and a functional
window frame simila.r to JVficrosoft's Presentation Manager. Additionally, mwm
has a root n1enu to assist you in the general control of the root window.

The mwm client receives configuration information frOlu three files:
/usr/lib/Xll/sys.Xdefaults, /usr/lib/Xll/system.mwmrc, and
/usr/lib/Xll/app-defaul ts/Mwm. You can copy the first two of these files to
your home directory, as . Xdef aul ts and . mwmrc respectively, and edit them to
create a window manager that exactly fits your needs.

How to crea.te your own personal window manager is the subject of the rest of
this chapter.

When to Use 'mwm'

The OSF (Motif vVindow I'v1anager is the default window luanager for your X
Window System. It is started from $HOME/ . xl1start when you start XII. If
that file doesn't exist, mwm is started from /usr/lib/Xll/sys.xllstart.

Syntax and Options

The syntax for mwm is as follows:

[
-display lwst:disp. lay.screen]

mwm .
-xrm reso'U.rcestrzng

-display Specifies the screen to l1se.

Managing Windows 6-7

-xrm Specifies using the nalned resource on starting.

Example

The following line in . xllstart in yonI' home directory starts mwm.

mwm $<0 &

The $<0 passes the window lna.na.ger options specified on the xl1start
command line.

Managing Windows with Other Window Managers

The hpwm (HP Window Manager) and uwm clients provide an alternative to
managing windows with the OSF /lvlotif vVindow Iv1anager.

Appendix A summarizes the differences between mwm, hpwm, and uwm.

Managing the General Appearance of Window Frames
In chapter 5, you read about /usr/lib/Xll/sys .Xdefaults and .Xdefaults.

The sys. Xdefaul ts file is the system file tha.t controls the X environment of
users who don't ha.ve a . Xdefaul ts file in their home directory .. Xdefaul ts
overrides the system-wide effects of sys. Xdefaul ts, enabling you to customize
your own environlnent while not interfering with the environments of others.

By editing .Xdefaults, yon ca.n control the general appearance of the window
frames in your environment. If YOll are a system administrator, you can
control the system-wide general a.ppea.ra.nce of window fralnes by editing
/usr/lib/Xl1/sys.Xdefaults.

Three aspects of the general appeara.nce of window fralTIeS are under your
control.

Color

Tile

The color of foreground, ba.ckground; and top, bottom, and
side shadows.

The mixture of foreground a.nd background color that
composes the pa.ttern of the frame surface.

6-8 Managing Windows

Font The style (including size) of the text characters in the title bar,
menus, and icon labels.

To control color, tile (pixmap) pattern, or fonts, you specify a value for the
appropriate window manager resource. A resource controls an element of
appearance or behavior. Resources are always n~med for the elements they
affect.

~indolJJ Menu t1i nimi ze

Cursor

Prompt

Figure 6-1. A OSF/Motif Window Manager Frame Showing Frame Elements

For example, suppose you want to color the background of your window
frame (an element of appearance) Firebrick red. Edit . Xdefaul ts, making
Mwm*background: (the resource controlling the background color of the frame)
the color Firebrick (a color value). The line in .Xdefaults would read as
follows:

Mwm*background: Firebrick

Managing Windows 6-9

Coloring Window Frames

You can use any of the standard XII colors listed in /usr /lib/Xll/rgb. txt
to color fraine elements. In addition, you ca.n crea.te your own colors using
hexadecimal values (see "Customizing the Color of Clients" in chapter 5).
Frame elements and resources exist for inactive windows (any window not
having the current keyboard focus) and for the active window (the window
having the current keyboard focus). This enables you to distinguish the active
window by giving it special "active window" colors.

Coloring Individual Frame Elements

The following table lists the individua.l elements of inactive and active window
frames, and the resources that control their color, for the OSF /Motif Window
Manager.

The default settings provide a 3-D visua.l effect without you having to specify
the exact colors for every frame element.

6-10 Managing Windows

Table 6·1. Window Frames Resources for a Color Display

To color this ... Use this resource ... The default value is ...

Background of inactive background LightGrey
frames.

Left and upper bevel of topShadowColor Lightened background
inactive frames. color

Right and lower bevel of bottomShadowColor Darkened background
inactive frames. color

Foreground (title bar text) foreground Darkened
of inactive frames. bottomShadowColor

Background of the active activeBackground CadetBlue
frame.

Left and upper bevel of the activeTopShadowColor Lightened
active frame. acti veBackground color

Right and lower bevel of activeBottomShadowColor Darkened
the active frame. act i veBackground color

Foreground (title bar text) activeForeground Darkened
of the active frame. activeBottomShadowColor

Example

The following lines in the . Xdefaul ts file in your home directory give the
window manager frame a maroon foreground and a gray background. The
background color is used to generate colors for the top and bottom shadow
elements so that a 3-D effect is achieved.

The 3-D effect is useful in providing a quick visual indication of selected items,
the active window, and so on.

Mwm*foreground: Maroon
Mwm*background: Gray

Managing Windows 6·11

Changing the Tiling of Window Frames With Pixmaps

A pixmap is a way of creating shades of colors. Each pixlllap is composed of
tiles. A tile is a rectangle that provides a surface pattern or a visual texture
by "mixing" the foreground and background colors into a color pattern. The
concept is analogous to using ceranlic tiles to provide a floor or countertop with
a pattern or texture.

Generally, the fewer the number of colors your display can produce, the more
important tiling will be to you. For example, if you had a monochrome display
(two colors-black and white), you could t.ile the window frames of your X
environment in shades of gray to achieve a 3-D look.

The OSF /Motif Window 11anager has resources that. enable you to tile the
frame background and bevels for both inactive and active windows.

Table 6-2.
Tiling Window Frames with Window Manager Resources

The default for
To tile t.his ... Use t.his resource ... color displays is ...

Background of inactive backgroundPixmap NULL
frames.

Right and lower bevels of bottomShadowPixmap NULL
inactive frames.

Left and upper bevels of topShadowPixmap NULL
inactive frames.

Background of the acti ve activeBackgroundPixmap NULL
frame.

Right and lower bevels of activeBottomShadowPixmap NULL
the active frame.

Left and upper bevels of activeTopShadowPixmap NULL
the active frame.

6-12 Managing Windows

The following table lists the acceptable values for pixmap resources:

Table 6-3. The Values to Use for Tiling Window Frames

To tile an element this color ... Use this value ...

The foreground color. foreground

The background color. background

A mix of 25% foreground to 75% background. 25-Ioreground

A mix of 50% foreground to 50% background. 50-Ioreground

A mix of 75% foreground to 25% background. 75-Ioreground

In horizontal lines alternating between the foreground and horizontaLtile
background color.

In vertical lines alternating between the foreground and background verticaLtile
color.

In diagonal lines slanting to the right alternating between the slantJight
foreground and background color.

In diagonal lines slanting to the left alternating between the slantleft
foreground and background color.

Managing Windows 6-13

The following figure illustrates the valid tile values:

foreground background

75_foreground hori zonta I tile

./.',: . : :,:.:\.::': .. ".:: :',
. . .. ~. .

" .. ' ,'... . ' .. "

slant left

Figure 6-2. Valid Tile Values

Frame Resources For Monochrome Displays

If mwm determinges that the monitor is monochrome, and no color resources are
specified for frame elements, mwm uses defaults appropriate for monochrome
displays. 'Mwm*background and Mwm*activeBackground are set to White. The
following table lists the frame elements, resources, and defaults for monochrome
monitors.

6-14 Managing Windows

Table 6-4.
Window Frame Resource Values for Monochrome Monitors

The background is ... For this resource ... The default value is ...

White topShadowColor White

White bottomShadowColor Black

White foreground Black

White topShadowPixmap foreground

White activeBackgroundPixmap foreground

White activeTopShowdowPixmap 50Joreground

The sys. Xdefaul ts file contains a set of entries that provides a more
attractive window shading for monochrome displays. These entries start with
mWIIl_bw, and require that you start mwm with the name mwm_bw. To do this, edit
the following line in .xllstart:

mwm & #Starts the mwm window manager

to read:

mwm -name mwm_bw & #Starts the mwm window manager

You must restart Xll in order for this change to take effect.

Specifying a Different Font for the Window Manager

The default font for the text of the OSF jMotif Window Manager is the fixed
font. However, you can use the fontList resource to specify a different font
if you desire. The fontList resource can use any valid Xll font name as its
value. For more information about fonts, see "Working With Fonts" in chapter
5.

Managing Windows 6-15

The Syntax for Declaring Resources

The above general appearance resources for the aSF /Motif Window Manager
and their values are specified in sys .Xdefaults (systelu-wide) or .Xdefaults
(your personal envirOluuent). The syntax you use differs depending on whether
you want the resource to control the general appearance of an element or the
general appearance of that element for a. pa1'licular object.

For example, the syntax you use to specify a frame background of Wheat is
different from the syntax you use to specify that on]y menus have a background
of Wheat.

The Syntax for the General Appearance of Elements

Use the following syntax in sys. Xdef aul ts or . Xdef aul ts to specify the
general appearance of frame elements:

My-m*resource: value

For example, if you want the foregronnd and background of inactive
window frames to be the opposite of the foreground and background of the
active window fralue, and you choose the colors SteelBlue for background
and VioletRed for foreground, you wOllld have the following lines in your
. Xdef aul ts file.

My-m*background: SteelBIue
My-m*foreground: VioletRed
MY-m*acti veBackground,: VioletRed
MY'm*activeForeground: SteelBIue

The Syntax for Window Frame Elements of Particular Objects

You can specify the general appea.rance of window frame elements for three
particular objects.

• Menus (includes- both system and root menns).

• Icons (includes the frame elements of all icons).

• Clients (includes the frame elements of all clients).

• Feedback (window luanagel' feedback windows).

6-16 Managing Windows

This gives you the ability to select a different color or font for a particular
object, perhaps menus, while the other objects (icons and fonts) remain the
same. To do this, use the following syntax:

Mwm* 1 :l:~~) * resource: value
c l.ent
feedback

For example, if you want the general appearance of the clients in your
environment to be SteelBlue and VioletRed, but want your menus to be
different, you could add the following lines to . Xdefaul ts.

Mwm*background:
Mwm*foreground:
Mwm*activeBackground:
Mwm*activeForeground:

Mwm*menu*background:
Mwm*menu*foreground:

Working with Icons

SteelBlue
VioletRed
VioletRed
SteelBlue

SkyBlue
White

Icons provide a handy way to straighten up a cluttered workspace. They also
provide you with a great tool for efficient multi-processing. For example, you
could open several windows, start processes in each, and then iconify them
all-letting the processes run their individual courses while you sit back and
read your electronic mail and work in an editing window.

Studying Icon Anatomy

Like the other objects that appear on the root window, you can configure
the appearance of all icons in sys.Xdefaults, for system-wide icons, or
.Xdefaults, for your own personal icons. Icons consist of two parts:

• A text label.

• A graphic image.

Managing Windows 6-17

The Label

Window
---Manager

Frame

---Image

---Label

Figure 6-3. An Icon Has Two Parts

An icon label is the text beneath an icon image. A label is usually supplied
by the client (via the WM_ICON_NAME window property), but some clients, for
example hpterm and xfd, provide a command-line option enabling you to write
in your own label.

Icon labels are truncated on the right to the width of the icon image, so if you
use small images, don't get too windy with your labels.

The Image

An icon image (a bitmap) is the actual graphic illustration of the icon. An
image can come from anyone of the following three sources:

client

user

A client can use the WM_HINTS window property to specify
either an icon window or a bitmap for the window manager to
use as the icon image.

You, the user, can specify an icon image using the iconlmage
resource.

6-18 Managing Windows

default The window manager will use its own built-in default icon
image if an image is not specified elsewhere.

The window manager uses the following default order of precedence in choosing
an icon image:

1. A specific user-supplied icon image resource.

2. A client-supplied icon image.

3. A default icon image.

The resource useClientlcon lets you interchange the precedence of
user-supplied icon images and client-supplied icon images. The default value is
"False." When the resource is set to "True," client-specified icon images have
precedence over user-supplied icon images.

Manipulating Icons

You manipulate icons similar to the way you manipulate windows, by
positioning the pointer on the icon and clicking, double-clicking, or dragging
a mouse button (depending on what you want to happen). You can also
use icons in situations where you want to start several processes when you
start XII, but don't want to clutter your screen with windows you won't
immediately use; simply start the processes as icons.

Managing Windows 6-19

Operating on Icons

The following table lists the operations you can perform on icons:

Table 6-5. You Can Manipulate Icons in These Ways

Position the pointer
To do this ... on the icon and ... What this does is ...

Turn an icon into a Double-click button l. Restores the window to its
window. former size and location.

Move an icon around on Drag button l. Moves a wire frame with
the root window. the pointer showing where

the icon will be moved.

Give an icon keyboard Press button l. Makes the icon the focus of
input focus keyboard input.

Move an icon to the top of Click button 1 on an icon Moves a partially concealed
the window stack. that has keyboard input icon to the front of the

focus. root window.

Select an icon and display Click button 1, or press Gives an icon keyboard
its window menu. (Shift) (Esc) or @~. focus and displays the

icon's window menu. The
window menu for an icon
is exactly like the window
menu of its associated
window. No window is
active while the icon has
the keyboard focus.

Starting Clients as Icons

You can start clients as icons when you start XlI. This gives you the benefit
of having the client only a double-click away, while not cluttering your display
wi th windows you're not using.

Some clients have iconify options, like hpterm's -iconic option. As you start
the client from a command line in your .xllstart or .mwmrc file, adding
the iconify option to the line enables you to start the client but to display it

6-20 Managing Windows

initially as an icon. Later, when you're ready to use the client, you double-click
on the icon and you're ready to go.

Controlling Icon Placement

By· default, the window manager places icons in the lower left corner of the
root window. Successive icons are placed in a row proceeding toward the right.
Icons are prevented from overlapping. An icon will be placed in the position it
last occupied if no icon is already there. If that place is taken, the icon will be
placed at the next free location.

The following three resources enable you to control the placement of icons:

Table 6·6.
Controlling Icon Placement with Window Manager Resources

To specify this ... Use tIns resource ... The default value is ...

A placement scheme for iconPlacement left bottom
Icons.

The distance between iconPlacementMargin the default space between
screen edge and icons. Icons

Automatic icon placement iconAutoPlace True
by the window manager.

Changing Screen Placement

You can place icons or you can have the window manager do it for you. The
window manager will place icons automatically, based on the placement scheme
you specify with the iconPlacement resource, if you give iconAutoPlace a
value of "True." If you would rather determine icon placement without help
from the window manager, give iconAutoPlace a value of "False."

Managing Windows 6·21

The following table lists the icon placelnent schemes available to you:

Table 6·7. Schemes for Automatic Placement of Icons

If you want this icon placement. . .. Choose tIns scheme ...

From left to right across the top of the screen. left top

From right to left across the top of the screen. right top

From left to right across the bottom of the screen. left bottom

From right to left across the bottom of the screen. right bottom

From bottom to top along the left of t.he screen. bottom left

From bottom to top along the right of the screen. bottom right

From top to bottom along the left. of the screen. top left

From top to bottom a.long the right. of t.he screen. top right

The Syntax for Icon Placement Resources

The resources that place icons share a. comrnon syntax:

Mwm* resource value

For example, if you want automatic placement of icons starting at the top of
the screen and proceeding down the right side, you would have the following
lines in your . Xdef aul ts file:

Mwm*iconPlacement: top right
Mwm*iconAutoPlace: True

Specifies the placement scheme.
Specifies automatic placement.

Controlling Icon Appearance and Behavior

The OSF /Motif Window 11ana.ger off'ers you a. number of resources to control
the specific appearance and behavior of icons. Among these are resources that
enable you to select icon decora.tion, control icon size, and create new icon
pixmaps.

6·22 Managing Windows

Selecting Icon Decoration

U sing the iconDecoration resource, you can select exactly what parts of an
icon you want to display:

Table 6-8. The Values That Control the Appearance of Icons

If you want an icon t.hat. looks like t.his ... Use this value ...

Just the label. label

Just the image. image

Both label and image. label image

The label of an active icon isn't label acti velabel
truncated.

Sizing Icons

Each icon hnage has a maximum and minimum size. The OSF /Motif Window
11anager has both default sizes a.s well a.s ma.ximum and Ininimum allowable
sizes.

Table 6-9. The Maximum and Minimum Sizes for Icon Images

Maxinmm Size Millimmll Size

Default. 50 x 50 pixels 32 x 32 pixels

Allowable 128 x 128 pixels 16x 16 pixels

If you plan to do a lot of work with icons, remember to keep your images
within the Inaximum and minimum limit.s. How the window manager treats
an icon depends on the size of the ilnage in relation to the maximum and
minimUlll sizes.

Managing Windows 6-23

Table 6-10. Icon Size Affects Icon Treatment

If an icon image is ... The window manager will ...

Smaller than the minimum size. Act as if you specified no image.

Within maximum and minimum limits. Center the image within the maximum
area.

Larger than the maximum size. Clip the right side and bottom of the
image to fit the maximum size.

You can use the following two resources to control icon image size:

Table 6-11.
Controlling Icon Image Size with Window Manager Resources

To specify this ... Use this resource ...

Maximum size of an icon image. iconlmageMaximum

Minimum size of an icon image. iconlmageMinimum

If you figure icon size based on how much screen "real estate" you can afford
to devote to icon space, bear in mind that the overall width of an icon is the
image width plus border padding and the image height is the icon height plus
border padding.

Using Custom Pixmaps

When you iconify a client, either the client supplies its own icon image, the
window manager supplies a default image, or you supply an image of your own.

You will obtain some icon images as "ready-made" bitmaps. At other times,
you may want to use the bitmap client (discussed in chapter 5) to create one of
your own. In either case, to use your bitmap, you only need to tell the window
manager where the bitmap is located.

To tell the window manager to use a particular bitmap for an icon image, use
the iconlmage resource. The value that follows this resource is the path to the
bitmap file you want to use. Note that, if specified, this resource overrides any
client-specified image.

6-24 Managing Windows

You also have the ability, using the bi tmapDirectory resource, to direct
the window manager to search a specified directory for bitmaps. The
bi tmapDirectory resource causes the window manager to search the specified
directory whenever a bitmap is named with no complete path. The default
value for bitmapDirectory is /usr/include/Xll/bitmaps.

The Syntax for Resources that Control Icon Appearance

The resources that control icon appearance have the following syntax:

Mwnt* resource: value

For example, you could use bitmapDirectory to search a bitmap subdirectory
in your home directory for custom bitmaps by inserting the following line in
your .Xdefaults file:

Mwnt*bitmapDirectory: /users/yourusername/bitmap

The iconlmage resource has three other syntaxes. The syntax you should use
depends on which of the following statements is true:

Table 6-12. The 'iconlmage' Resource Has Several Syntaxes

If this is true ... U ~e this syntax ...

You want to use the image for Mwrn*iconlrnage: path/bitmap
all clients for which you don't
otherwise specify an image. All
these clients will have the same
image.

You want to use the image only Mwrn*clientclass*iconlrnage: path/bitmap
for a specific class of clients.

You want to use the image only Mwm*clientname*iconlrnage: path/bitmap
for a specific instance of a client
named using the client's name
resource.

You want to use the image as Mwm*defaults*iconlrnage: path/bitmap
the default image whenever the
client class or name isn't known.

Managing Windows 6-25

For example, if you want to use your own happyface bitmap for hpterm
windows and see a complete label whenever any icon is active, you would have
the following lines in your. Xdefaul ts file:

Mwm*Hpterm*iconlmage: /users/ YO'llr'U.sernam,e/Bi tmaps/face . bits
Mwm*iconDecoration: label activelabel

Coloring Icons by Client Class

As it does for window frames, the aSF /lvfotif V\lindow Manager supplies a
number of resources that enable you to specify the colors of icon elements.

Coloring Icon Elements Individually

The following table lists icon image elements and the resources that control
their color.

Table 6-13. Coloring Icons with Window Manager Resources

To color this ... Use t.his resource .,.

Icon image background. icon Image Background

Left and upper bevel of icon image. iconImageTopShadowColor

Right and lower bevel of icon ima.ge. iconImageBottomShadowColor

Icon image foreground. iconImageForeground

If you do not choose to color an element of an icon image, the window manager
uses default values. It gets these values from either of the two following lines:

Mwm*reso'U.rce: color Colors evel'Y instance of an element.

Mwm*icon*resource: color Colors only this element of icons.

You can find these lines in the. Xdefaul ts and sys. Xdefaul ts files.

When making changes, don't confuse an element (foreground,
background, topShadowColor) with a resour'ce (konlmageForeground,
iconlmageBackground, iconbnageTopShadowColor).

6-26 Managing Windows

Changing the Tile of Icon Images

The OSF /Motif \iVindow "t\1anager has resources that let you tile the bevels of
icon images.

Table 6-14. Tiling Icon Images with Window Manager Resources

To t.ile t.his ... Use t.his resource ...

Right and lower bevels of an icon ima.ge. iconIrnageBottornShadowPixrnap

Left and upper bevels of an icon image. iconIrnageTopShadowPixmap

Default values for these resources arc the icon's bottoln and top shadow
pixmaps specified using the bottomShadowPixmap and topShandowPixmap
resources set by the entries Mwm*icon*resource or Mwm*resource.

The Syntax for Icon Coloring Resources

The resources that color icons can be specified in four ways:

• The first syntax is the most specific. You can llse it to specify a resource
and value for a particular instance of a client, identified by the client name.
(The client name is specified by the client's name resource.) The colors you
specify with this resource take precedence over any other specification for
this resource.

Mwm*clientname*resource: color

• The second syntax specifics a resource and va.Jlle for a specific client class.

Mwm* clientcla.ss* resource: color

• The third syntax specifies a reS01l rcc an d value generally across any and
all clients. An example of proper Ilse wOllld be to ensure that all your icon
backgrounds were the same color, a good thi ng for consistency.

Mwm* resource: colo1'

• The fourth syntax is a default synta.x. It specifies the color of any client that
is of unknown cla.ss.

Mwm*default*resou.rce: calm'

Managing Windows 6-27

Using the Icon Box to Hold Icons

The OSF /Motif \tVindow Mana.ger a.llows YOll to lise an icon box to contain
icons, rather than having sta.nd-alone icons on the workspace. An icon box
consists of an mwm window a.nd frame. All icons are contained within the icon
box. Thus, an icon box ca.n reduce the a.mount of "real estate" taken up by
client icons.

Location cursor

Icon for normalized window

Icon for iconified window

Figure 6-4. Icon Box

The icon box is a scrollable window that displays icons in a. grid (rows and
columns). Icons in the icon box do not overl ap. If there a.re icons that cannot
be displayed in the visible part of the icon box, the user can scroll to see the
icons. The sliders within the scroll hal'S show the extent of the icon grid that is
visible.

The icon box can be minimized (iconified) just like a.ny other window. If the
icon box is minimized, it is placed iut.o the icon grid on the workspace.

6-28 Managing Windows

Specifying the Icon Box

Several resources specify whether an icon box is used, define its geometry and
location, and specify its name (for looking up resources) and title.

• The uselconBox resource specifies whether or not an icon box is used. A
value of of "True" places icons in an icon box. The default value of "False"
places icons on the root window.

• The iconBoxGeometry resource sets the initial size and placement of the icon
box. If the iconBoxGeometry resource is used, the largest dimension of the
size determines if the icons are placed in a row or a column. The default
policy is to place icons in a row going from left to right, top to bottom.

• The iconBoxName resource specifies the name that is used to look up icon
box resources. The default name is "iconbox."

• The iconBoxTi tIe resource specifies the name that is used in the title area
of the icon box frame. The default name is "Icons."

For example, the following line specifies that icons will be placed in an icon
box:

Mwm*uselconBox: True

The value of the iconBoxGeometry resource is a standard window geometry
string with the following syntax:

- Width X Height [± x ± y]
If x and yare not provided, the icon box is placed at +0-0.

The actual size of the icon box window depends on the iconlmageMaximum
(size) and iconDecoration resources. The default value for size is (6 *
icon Width + padding) wide by (1 * iconHeight + padding) high.

ContrOlling the Appearance of Icon Boxes

The icon box is displayed in a standard window management client frame.
Client-specific resources for the icon box can be specified using "iconbox" as
the client name.

Mwm* iconbox* resource : value

Resources that can be used with the icon box to change its appearance are:

Managing Windows 6-29

• iconDecoration .

• The mwm resources dealing with mattes and icon appearance. (The icon
appearance resources affect the icon displayed when the icon box is
minimized.)

The Icon Box Window Menu

The window menu for the icon box differs from the standard window menu in
that it does not contain the "Close" selection. In its place is the "PackIcons"
selection, which shifts icons to fill empty spaces in the icon placement grid so
that the icons appear in neat, complete rows.

Figure 6-5. Icon Box With Icon Box Window Menu

Controlling Icons in the Icon Box

Every client window that can be iconified has an icon in the icon box, even
when the window is in the normal state. The icon for a client is put into the
icon box when the client becomes managed by the window manager, and is
removed from the icon box when the client withdraws from being managed.

6-30 Managing Windows

Icons for windows in the normal (open) state are visually distinct from icons
for windows that are iconified. Icons for windows that are iconified look like
stand-alone icons. Icons for windows that are in the normal state appear flat
and are optionally grayed-out. The value of "True" for the fadeNormallcon
resource grays out icons for normalized windows. The default value is "False."

The text and image attributes of icons in icon boxes are determined in the
same way as for stand-alone icons, using the iconDecoration resource.

A standard "control" location cursor is used to indicate the particular icon
in the icon box to which keyboard actions apply. The location cursor is an
unfilled rectangle that surrounds the icon.

Icons contained in the icon box can be manipulated with the mouse and from
the keyboard. Mouse button actions apply whenever the pointer is on any part
of the icon.

Table 6-15. Controlling Icons in the Icon Box With a Mouse

IT you want to ... Do this ...

Select an icon. Press button l.

Normalize (open) an iconified window. Double-click mouse button l.

Raise a normalized window to the top of Double-click mouse button l.
the stack.

Move an icon within the icon box. Drag button 1.

To manipulate an icon from the keyboard, make the icon box the active
window and use the arrow keys to traverse the icons in the icon box. Pressing
(Return) does the default action for the selected icon: for an icon of a normalized
window, the window is raised; for an icon of an iconified window, the window is
normalized. The arrow keys move the focus around the icons that are visible.
The [Tab) key moves the keyboard input focus around the box in this order:
icons, horizontal scroll bar, vertical scroll bar, icons. [Shift} (Tab) moves the focus
in the opposite direction.

Managing Windows 6-31

Managing Window Manager Menus
Menus offer an easy way to get the system to do something for you. While the
concepts of "operating system," "commands," and "argunlents" are confusing
to the inexperienced user, most people can rea.dily appreciate the concept of
choosing a selection from a. menu.

The OSF /Motif \\Tindow Mana.ger menus are controlled by a text file in
the /usr/lib/Xll directory called system.mwmrc, unless you have a file in
your home directory called . mwmrc. You ca.n add or delete menus and menu
selections by copying system. mwmrc to your home directory as . mwmrc and
modifying it to suit your needs.

Default Menus

The OSF /Motif Window]VIanager comes with two defa.ult menus:

• The Window Menu .

• The Root 1Vlenu.

The default window 111ellU is built into mwm. For reference, a copy of its
contents are placed in . mwmrc.

Menu DefaultWindowMenu
{

"Restore" _R Alt<Key>F5 f.normalize
"Move" _M Alt<Key>F7 f.move
"Size" _S Alt<Key>F8 f.resize
"Minimize" _n Alt<Key>F9 f.minimize
"Maximize" _x Alt<Key>Fl0 f.maximize
"Lower" _L Alt<Key>F3 f.lower
no-label f.separator
"Close" _C Alt<Key>F4 f.kill

}

6 .. 32 Managing Windows

Table 6-16. Action of Entries in the Window Menu

Entry Action Taken

Menu DefaultWindowMenu Function type and name for window
menu.

Restore Normalizes icon or maximized window.

Move Moves window around screen.

Size Changes window size.

Minimize Changes window into icon.

Maximize Enlarges window to cover screen.

Lower Lowers window to bottom of stack.

Close Closes window by killing its process.

The windowMenu resource must be set in order to replace the
Defaul tWindowMenu with a different menu.

The default root menu is specified in the same files by the following lines:

Menu RootMenu
{

}

"Root Menu"
"New Window"
"Start Clock"
IIStart Load ll

"Shuffle Up"
"Shuffle Down"
IIRefresh"
no-label

IIRestart "

f.title
f.exec "hpterm &;"
f.exec "xclock -geometry 100x90-1+1 &"
f.exec IIxload -geometry 150x90-130+1 &"
f.circle_up
f.circle_down
f.refresh
f . separator

f.restart

Managing Windows 6-33

By default, the window menu displays when you do the following operations:

• Press button 1 on a window frame's window menu button.

• Press button 3 anywhere on a window frame.

• Press (Shift) (Esc) with the keyboard focus set to a window.

By default, the root menu displays when you press button 3 on the root
window.

You can modify either menu to suit the specific needs of your application;
however, for the sake of the consistency of window operation, it's usually better
to modify the root menu and keep the window menu the same.

Modifying Menu Selections and Their Functions

All window manager menus, regardless of the mechanism that calls them to the
screen, have the same syntax.

Menu Syntax

Menu MenuName
{

}

selectionl [mnemonic]
selection2 [mnemonic]
selection3 [mnemonic]

selection * [mnemonic]

[accelemtor] function [argument]
[accelemtor] -function [argument]
[accelemtor] function [argument]

[accelemtor] function [argument]

Each line identifies a selection name followed by the function to be done if that
selection is chosen. The order of the selections is the order of their appearance
when you display the menu. A selection name may be either a character string
or a bitmap.

Modifying Selections

Any character string containing a space must be enclosed in double quotes
(""); single-word strings don't have to be enclosed, but it's probably a good
idea for the sake of consistency. An alternate method of dealing with two-word
selection names is to use an underbar (_) in place of the space.

6·34 Managing Windows

You can create a bitmap with the bitmap client and use it as a selection name.
The syntax for doing this is as follows:

@/path/ bitmapfile function [argument]

Note the at-sign (@) in the abovc 1inc. The at-sign tells the window manager
that what follows is thc path to a, hi t map file.

Modifying Functions

Each function operates in one or more of the following contexts:

root

window

icon

Operates the function when the root window is selected.

Operates the function when a client window is selected. Some
functions operate only when the window is in its normalized
state (f.maximize), or its maximized or iconified state
(f.normalize).

Operates the function when an icon is selected.

Additionally each function is opera.ted hy one or more of the following devices:

• Button.

• Key.

• Menu.

Any selection that uses an invalid context, an invalid function, or a function
that doesn't apply to the current context is grayed out. This is the case with
the "Restore" selection of a tel'nlinal window's system menu or the "Minimize"
selection of an icon's window menu.

The following table lists the va.lid fll 11 ctions for the OSF /Motif Window
Manager.

Managing Windows 6-35

Table 6·17. Valid Window Manager Functions

Functions Contexts Devices

Name Description Root Icon Window Button Key Menu

f.beep Causes a beep to .; .; .; .; .; .;
sound.

f.circle_down Puts window on .; .; .; .; .; .;
bottom of stack.

f.circle_up Puts window on top of .; .; .; .; V V
stack.

f.exec Uses /bin/ sh to .; .; .; .; .; .;
execute a command.

f.focus_color Sets colormap focus .; .; .; V .; .;
when colormap focus
policy is explicit.

f.focusJrey Sets keyboard input .; .; .; .; .; V
focus when keyboard
focus policy is explicit.

f.kill Terminates a client's .; .; .; .; .;
connection to server.

f.lower Lowers a window to .; .; .; .; V
bottom of stack.

f.maximize Enlarges a window to .; .; V .; .;
its maximum size.

f.menu Associates a menu .; .; V .; V .;
with a selection or
binding.

f.minimize Changes a window V .; .; V
into an icon.

f.move Enables the interactive V V .; .; V
moving of a window.

6·36 Managing Windows

Table 6·17a. Valid Window Manager Functions (continued)

Functions Contexts Devices

Name Description Root Icon Window Button Key Menu

f.next_cmap Installs the next V V V V V V
color map in the
window with the
colormap focus.

f.next]{ey Sets keyboard focus V V V V V V
policy to the next
window /icon in the
stack.

f.nop Does no function. V V V V V V
f.normalize Displays a window in V V V V V

normal size.

f. packjcons Packs icons rows in V V V V V V
the root window or
icon box.

f.pass]{eys Toggles between V V V V V V
enabling and disabling
processing of key
bindings.

f.post_wmenu Posts the window V V V V V
menu

f. prev _cmap Installs the previous V V V V V V
color map in the
window with the
color map focus.

f.prev]{ey Sets the keyboard V V V V V V
input focus to the next
window /icon in the
stack.

Managing Windows 6·37

Table 6-17b. Valid Window Manager Functions (continued)

Functions Cont,cxts Devices

Name Dcscript,ion Root, Icon Window Dutton Key Menu

f.quitJrlwm Terminates aSF /Motif V V V V
~Tindow Manager, but
not X.

f.raise Lifts a window to the V V V V V
top of the window
stack.

f.raiseJower Raises a partially V V V V V
concea.led 'windovv;
lowers an unconcealed
window.

f.refresh Redraws all windows, V V V V V V
f.refresh_ win Redraws a clien t V V V V

window.

f.resize Enables you t.o V V V V
interactively l'esi7,e a
window,

f.restart Restart.s t.he J V V V
aSF /Motif VVindow
Ma.nager.

f.send.JTlsg Sends a client. messa.ge. J J V V V
f.separator Draws a line between J J J V

menu selections.

f.set_behavior Rest.arts rnwrn wit.h eXT J J V V V V
or cust.om beha.viol',

f.title Inserts a title into a V J V V
menu at. t.he specified
position.

6-38 Managing Windows

Menu Titles

The f . title functions creates a menu title, and automatically places a
separator above and below the title.

Menu Selections

A selection can be a character string or a graphic bitmap. If the character
string contains spaces, it must be enclosed in quotation marks (").

Mnemonics and Accelerators

You have the option of using a mnemonic and accelerator with a menu
selection. A mnemonic is specified using the syntax:

mnemonic = _ character

An accelerator is specified using keyboard binding syntax described later in this
chapter (see "Keyboard Binding Syntax").

< idxlmenus:changingl

Changing the Menu Associated with the Window Menu Button

The windowMenu resource lets you change the menu displayed when you press
button 1 on the window menu button. This gives you the ability to display a
menu of your choice from the window menu button. All you need do is make a
new menu, then use the windowMenu resource to associate this new menu with
the window menu button.

The windowMenu resource has several forms .

• The first syntax specifies a menu for a particular instance of a client,
identified by the client name. (The client name is specified by the client's
name resource.)

Mwm*clientname*windowMenu: MenuName

For exam pIe, you would place the following line in your . Xdef aul t s file to
associate a menu named EditMenu with an hpterm window started as hpterm
-name hp850.

Mwm*hp850*windowMenu: EditMenu

Managing Windows 6-39

• The second syntax specifies the menu for a specific class of clients:

Mwm*clientclass*windowMenu.: MenuName

For example, you may want to associate a particular EditorMenu of your ·own
creation with all hpterm windows:

Mwm*HPterm*windowMenu: Edi torMenu

• The third syntax specifies the menu for all classes of die.nts:

Mwm*windowMenu: MenuName "

For example, if you want to associate a special CADCAMMenu menu with the
window menu button, you would add the following line to your .Xdefaults
file:

Mwm*windowMenu:CADCAMMenu

• The fourth syntax specifies a menu for any client whose class is unknown:

Mwm*defaults*windowMenu: MenuName

Making New Menus

You have the option of modifying the window and root menus, hut you also
have another option: You can create a completely new menu. The new menu
can be displayed by a button pn~ss, a key press, or by selecting it from a.n
existing menu.

To create a completely new menu, use the menu syntax in the previous section
as a model to do the following:

1. Fill in a menu name.

2. Make up selection names.

3. Optional: Choose a mnemonic and accelerator.

4. Give each selection a function to perform from the "Table of Menu
Functions."

For example, the following menu is named "Graphics Projects." The menu
selections are all bitmaps symbolizing different graphics projects. The bitmaps

6 ... 40 Managing Windows

are kept in this user's home directory /users/ dub. When the user, Dub, selects
a. symbol, the graphics program starts and opens the appropriate graphics file.

Menu "Graphics Projects"
{
CD/users/dub/fusel.bits _F Alt<Key>F f.exec "cad /spacestar/fusel.e12"
@/users/dub/lwing.bits _L Alt<Key>L f.exec "cad /spacestar/lwing.s05"
CD/users/dub/rwing.bits .. R Alt<Key>R f.exec "cad /spacestar/rwing.s04"
CD/users/dub/nQse.bits _N Alt<Key>N f.exec "cad /spacestar/nose.e17"
}

To display a. new menu with a button or key, follow these steps:

1. Choose the button or key that you want to use.

2. Choose the action on the button or key that will cause the menu to display.

3. Use the f . menu function with the menu name as an argument to bind the
menu to the button Of key.

For more information on button and keyboard bindings, including examples,
see the next two sections, "Using the Mouse" and "Using the Keyboard."

Using the Mouse
The mouse offers a. quick way to ma.ke things ha.ppen in your window
environment without the time-consuming process of typing commands. The
window manager recognizes the following button operations:

Press Holding down a mouse button.

Click

Double-click

Drag

Pressing and releasing a mouse button.

Pressing and releasing a mouse button twice in rapid
succession.

Pressing a mouse button and moving the pointer (and mouse
device).

You associate a button operation with a window management function
using a button binding. A button binding is a command line you put in the

Managing Windows 6 .. 41

Default Button Bindings

The OSF /Motif 'Vindow Mana.ger C01nes with the following built-in button
bindings.

Table 6·18. Built·ln Button Bindings

Locat.ion of Point.er Dehavior

Window menu button Pressing ImUon 1 displays t.he window menu. This
behavior ca.n be modified by the yMenuButtonClick
resollrce.

\i'Vindow menu button Double-clicking button 1 closes the window. This
behavior can be modified by the yMenuButtonClick2
resource.

Minimize button Clicking but.t.on 1 minimizes the window.

Maximize button Clicking bllt.ton I maximizes t.he window.

Title bar Dra.gging butt.on 1 moves t.he window.

Window or icon Pressing button 1 gives it. keyboard focus.

Resize border Dragging butt.on 1 resizes t.he window.

Icon Clicking butt.on 1 displa.ys the icon window menu. This
behavior can be modified by the iconClick resource.

Icon Double-clicking bllt.ton 1 normalizes the window.

Icon Pressing but.t.on 1 moves t.he icon.

These bindings are fixed-they cannot he replaced by other bindings.
However, you ca.n add to some of them (see "Modifying Button Bjndings and
Their Functions.") For exa.mple, you can specify a.n addHional function for
double-clicking button 1 in an icon, but the dOllblc click will also normalize the
window.

MYm provides an additional default binding that can be deleted or replaced:

6-42 Managing Windows

Table 6·19. Additional Button Bindings

Locaton of Pointer Behavior

Icon or Frame Pressing button 1 raises the window or icon.

This binding is listed in the following section of the . mwmrc file.

Buttons DefauItButtonBindings
{

<Btn1DoYn> icon I frame f.raise
}

The binding can be removed or altered by deleting or editing the line
that begins with <Btn1Down>. (In order for the editing to have an effect,
the buttonBindings resource in the .Xdefaults file must be set to
Def aul tButtonBindings, and you must restart the window manager.)

Modifying Button Bindings and Their Functions

You can modify the button bindings section of your .mwmrc file to suit your
individual needs.

Button Binding Syntax

The syntax for button bindings is as follows:

Buttons ButtonBindingSetName
{

}

button
button
button

context I context function
context I context function
context I context function

[argument]
[argument]
[argument]

Each line identifies a certain button and operation, followed by the context in
which the button operation is valid, followed by the function to be done. The
following button binding contexts are recognized by the window manager:

root Operates the function when the button is activated in the root
window.

Managing Windows 6·43

window

frame

icon

title

app

Operates the function when the button is activated in a client
window or window frame.

Operates the function when the button is activated on a
window frame.

Operates the function when the button is activated on an icon.

Operates the function when the button is activated on a title
bar.

Operates the function when the button is activated in a client
window (excludes window frames).

Modifying Button Bindings

To modify the button bindings:

1. Edit the "DefaultButtonBindings" section of the system.mwmrc (to
make system-wide changes) or .mwmrc (to make changes to your local
environment). The easiest way to modify button bindings is to change the
default binding or to insert extra lines.

2. Set the buttonBindings resource in your . Xdefaul ts file
to DefaultButtonBindings. This tells mwm to look in the
"DefaultButtonBindings" section of your .mwmrc file for a list of button
bindings.

For example, Dub, the user who created his own "Graphics Project" menu
in the previous section, may want to display the menu when he presses the
(Extend chad-button 3 sequence with the pointer in the root window. He
would only need to insert one line in his . mwmrc file to make this happen.
The "DefaultButtonBindings" section of his .mwmrc file would look like the
following:

Buttons DefaultButtonBindings
{

<Btn1Down>
Alt<Btn3Down>

}

iconlframe f.raise
root f.menu "Graphics Project"

In addition, Dub must have the following entry in his . Xdefaul ts file:

Mwm*buttonBindings: DefaultButtonBindings

6-44 Managing Windows

The new key binding will be in effect when Dub restarts the window manager.

Making a New Button Binding Set

Perhaps inserting a new button binding into the "DefaultButtonBindings"
set is not enough. Perhaps you need to make a cOlnplete new set of button
bindings. To do this, use tlH~ "Defal1ltButtonBindings" section of your .mwmrc
as a model. After you have created the new button binding set, use the
buttonBindings resource to tell the window manager about it. You do this by
adding a line to your . Xdefaul ts file. The syn tax of the line is as follows:

Mwm*buttonBindings: iVewBultonJJirulingSet

This line directs the window ma.nager to use "New ButtonBindingSet" as the
source of its button bindinginforma.tion. The button bindings are assumed to
exist in the file named by the Mwm*configFile: resource, the default being
.mwmrc.

For example, suppose Dub, OlH graphics 11ser, wants to specify a
cOlnpletely new button binding set instea.d of inserting a line in the existing
"DefaultButtonBilldings" set. He needs to create a new button binding set,
such as the following, modeled after the default set:

Buttons GraphicsButtonBindings
{

<Btn2Down> root f.menu IIGraphics Project"
}

In his . Xdefaul ts file, Dub would then insert the fo1lowing line:

Mwm*buttonBindings: GraphicsButtonBindings

To displa.y his graphics 111en11, D 1I h needs on Iy to press button 2 when the
pointer is on the root window.

Modifying Button Click Timing

The OSF /Motif vVindow Manager ha,s a.nother resource for controlling button
behavior. This resonrce, doubleClickTime, sets the maxilnum time (in
milliseconds) that can elapse between button clicks before a double-click
becomes just "two clicks in arm\!." In other words, if two clicks occur in less
than the lnaxilnlun tiIne, they are asstl med to be a double-click; if two clicks

Managing Windows 6-45

occur in a thne greater than the ma.ximum time, they are assumed to be two
single clicks. The default is 500 (milliseconds).

Using the Keyboard
Similar to mouse button bindings, you can bind (a.ssociate) window manager
functions to "special" keys on the keyboa.rd using keyboard bindings. The
window manager recognizes the following special keys:

• Shift.

• Escape.

• Alt (Meta or Extend Char).

• Tab.

• Ctrl.

• Lock.

Default Key Bindings

The OSF /Motif \N'indow 1\1a.nager comes with the following default key
bindings.

6-46 Managing Windows

Table 6-20.
OSF/Motif Window Manager Default Keyboard Bindings

When the keyboard
focus is: Press: What this does is:

Window or icon (Shift) (Escape) Displays window menu.

Window or icon @Ge) Displays window menu.

''''indow, icon, or @(Tab) Swit.ches keyboard focus to the next
none window or icon.

Window, icon, or @ (Shift} (Tab] Switches keyboard focus to the previous
none window or icon.

''''indow, icon, or @ (Escape) Swi tches keyboard focus to the next
none window or icon.

Window, icon, or @ (Shift) (Escape) Switches keyboard focus to the previous
none window or icon.

''''in dow @@ Swit.ches keyboard focus to the next
windO\'V or icon, including transient
windows.

""indow, icon, or @!) (£ill (Shift] CO Restart mwm with default or custom
none hehavior.

These keyboard bindings a.re listed in the following lines in system.mwmrc and
.mwmrc.

Keys OefaultKeyBindings
{

Shift<Key>Escape
Alt<Key>space
Alt<Key>Tab
Alt Shift<Key>Tab
Alt<Key>Escape
Alt Shift<Key>Escape
Alt<Key>F6
Alt Ctrl Shift<Key>exclam

window
window I icon
root I icon I window
root I icon I window
root I icon I window
root I iconlwindow
window
root I icon I window

f.post_wmenu
f.post_wmenu
f.next_key
f.prev_key
f.next_key
f.prev.key
f.next_key transient
f.set_behavior

Managing Windows 6-47

The first line specifies the function type (Keys) and the name of the keyboard
binding set (DefaultKeyBindings). The following lines specify the actual
keyboard bindings. For example, the first line binds the [Shift) (Esc) key press
sequence to the function that displays the window menu. The second line binds
the [Extend char] [space) key press sequence to the same function.

You can modify or delete any of these bindings by editing or deleting the line.
(In order for the editing to have an effect, the keyBindings resource in the
.Xdefaults file must be set to DefaultKeyBindings.)

Modifying Keyboard Bindings and Their Functions

You can modify the keyboard bindings section of your .rnwmrc file if your
situation requires it.

Keyboard Binding Syntax

The syntax for keyboard bindings is as follows:

Keys KeyBindingSetName
{

}

key context I context function
key context I context function
key context I context function

[argument]
[argument]
[argument]

Each line identifies a unique key press sequence, followed by the context
in which that sequence is valid, followed by the function to be done. The
following keyboard binding contexts are recognized by the window manager:

root

window

icon

Operates the function when the key is pressed while the root
window has keyboard focus.

Operates the function when the key is pressed while a client
window has keyboard focus.

Operates the function when the key is pressed while an icon
has keyboard focus.

6-48 Managing Windows

Modifying Keyboard Bindings

To modify the default keyboard bindings bindings:

1. Edit the "Default Key Bindings" section of the system.mwmrc (to
make system-wide changes) or .mwmrc (to make changes to your local
environment). The easiest way to modify button bindings is to change the
default binding or to insert extra lines.

2. Set the keyBindings resource in your .Xdefaults file to
Defaul tKeyBindings. This tells mwm to look in the "Default Key Bindings"
section of your .mwmrc file for a list of key bindings.

For example, suppose Dub, the user who created his own "Graphics Project"
menu, kept pressing the (Shift) (Esc) sequence and accidentally displaying the
window menu. He might decide that he is better off to disable that particular
keyboard binding. To do so, he would need to delete (or comment out) the
proper line in his . mwmrc file:

Shift<Key>Escape window f.post_wmenu

Dub commented out the line by placing a hash mark (#) in the left margin of
the line.

In addition, Dub must have the following entry in his. Xdefaul ts file:

Mwm*keyBindings: DefauItKeyBindings

Making a New Keyboard Binding Set

With keyboard bindings, as with button bindings, you have the
option of creating a whole new binding set. To do so, you can use the
"DefaultKeyBindings" section of your .mwmrc as a model. After you have
created the new keyboard binding set, use the keyBindings resource to explain
your modification to the window manager. You do this by adding a line to
your .Xdefaults file. The syntax of the line is as follows:

Mwm*keyBindings: NewKeyboardBindingSet

This line directs the window manager to get its keyboard binding information
from the "NewKeyboardBindingSet" section of the .hpwmrc file. You can have
the window manager look in any file if you specify the path and file name with
the Hpwm*conf igFiIe: resource in your . Xdef aul ts file.

Managing Windows 6-49

Customizing the Windows Frames

In some cases, you might feel your '~screen real estate" is too expensive, and
you may not want to take up "valuable space" wit.h window frames. For
example, do you real1y need functional buttons and a resizable frame around a
clock that just sits in the corner of you r screen? You could switch to the uwm
window manager, but the aSF /~dotif \Nindow :r..1anager has two resources for
just such situations:

• The clientDecoration resource enables you to choose just how much or
how little "decoration" you want to put around each client .

• The transientDecoration resource enables you to choose just how much
or how little decoration you want to put around ea.ch transient window. A
transient window is a. relatively short-lived window, for example, a dialog
box.

You can still access the functionality of a.ny decoration you remove by binding
its functions to 11louse buttons 01' to key presses, as explained in the above
sections.

Adding or Removing Frame Elements

You specify the clientDecoration and transientDecoration resources as
a list of the frame elements. If the first element in the list is preceded by a
plus (+) sign or has no sjgn pl'ec.edi ng it., t.he wi ndow manager starts with no
frame and assumes that the list contains those c1ernents you want added. If the
list begins with a minus (-) s.igll, the window manager starts with a complete
frame and assumes that the list conta.ins elements you want removed from the
frame.

6-50 Managing Windows

The list of valid window frame elements is as follows:

Table 6·21.
Valid OSF /Motif Window Manager Window Frame Elements

FraIne EIClucnt. Descript.ion

all Include a.1I fra.me elements (default value).

border 't\'indow border.

maXlmIze Ma.ximize button (includes title bar).

mIll JIllI ze 1\1inimize but.ton (includes title bar).

none lnclude no window frame elements.

resizeh Resi:w horder ha.ndles (includes border).

menu "Vindow menu bllt.ton (includes title bar).

title Tit.le bal' (includes border).

The Syntax for the 'clientDecoration' and 'transientDecoration' Resources

The clientDecoration resource has several forms .

• The first syntax the most specific. It specifies the addition or removal of
elements from a particular instance of a c:1ient, identified by the client name.
(The client nanle is specified by the client's name resource.)

Mwm*clienlname*clientDecoration:

{
±all }
±none

±border

±maximize

±minimize
±resizeh

±menu

±title

For example, you may wa.nt a border wit.h only a title bar and window menu
button around a particular hpterm window started as hpterm -name hp850.

Mwm*hp850*clientDecoration: +menu

Managing Windows 6-51

• The second syntax specifies the addition or removal of elements from specific
classes of clients:

Mwm* clientclass*clientDecoration:

{
±all }
±none

±border
±maximize
±minimize
±resizeh
±menu
±title

For example, you ma.y want to remove just the resize border and maximize
button from all clocks you display on your screen:

Mwm*XClock.clientDecoration: -resizeh -maximize

• The third syntax specifies the addition or removal of elements from all classes
of clients:

Mwm*clientDecoration:

{
±all }
±none

±border
±maximi:z;e
±tninimize
±resizeh
±menu
±title

For example, you could remove the maximize button from all windows by
adding the following line in your .Xdefaults file:

Mwm*clientDecoration: -maximize

6-52 Managing Windows

• The fourth syntax specifies the addition or removal of elements from any
client with an unknown class:

{
±all }
±none

Mwm*defaults*clientDecoration:

±border
±maximize
±minimize
±resizeh

±menu
±title

The transientDecoration resource has the following syntax:

Mwm*transientDecoration:

{
±all }
±none

±border
±maximize
±minimize
±resize
±menu

±title

For example, you could remove the tile bar from all transient windows by
adding the following line in your. Xdefaul ts file:

Mwm*transientDecoration: -title

Managing Windows 6·53

Controlling Window Size and Placement

The OSF /Motif Window Manager has several resources that allow you to refine
your control of the size and placement of windows.

Refining Control with Window Manager Resources

The following table lists window manager resources enabling you to refine your
control over the size and placement of windows.

Table 6-22.
Refining Your Control with Window Manager Resources

To control this ... Use this resource ... The default is ...

Initial placement of new interactivePlacement False
windows on the screen.

The ability to enlarge windows limitResize False
beyond the size specified in
maximumClientSize.

The maximum size of a client maximumMaximumSize 2 x screen
window set by user or client.

The sensitivity of dragging moveThreshold 4 pixels
operations.

Exact positioning of window positionIsFrame True
and window frame.

Clipping of new windows by positionOnScreen True
screen edges.

The width of the resize border resizeBorderWidth 10 pixels
of the window frame.

Displaying the resize cursors resizeCursors True
when the pointer is in the
resize border.

The maximum size of a maximumClientSize screen SIze
maximized client.

6·54 Managing Windows

The interactivePlacement resource has the following values:

True The pointer changes shape (to an upper left corner bracket)
before a new window displays, so you can choose a position for
the window.

False The pointer doesn't change shape. A new window displays
according to the placement values specified in the X
configuration files.

The limi tResize resource has the following values:

True

False

A window cannot be resized to greater than the maximum
size specified by the maximumClientSize resource or the
WM_NORMAL_HINTS window property.

A window can be resized to any size.

The value of the maximumMaximumSize resource is the widthxheight of the
screen being used. The dimensions are given in pixels. For example, for an
SRX display, maximumMaximumSize would have a value of 1280x 1024.

The value of the moveThreshold resource is the number of pixels that the
pointer must be moved with a button pressed before a move operation is
initiated. You can use this resource to prevent window or icon movement when
you unintentionally move the pointer during a click or double-click.

The positionIsFrame resource has the following values:

True

False

The position information (from WM_NORMAL_HINTS and
configuration files) refers to the position of the window frame.

The position information refers to the position of the window
itself.

The posi tionOnScreen resource has the following values:

True

False

If possible, a window is placed so that it is not clipped. If not
possible, a window is placed so that at least the upper left
corner of the window is on the screen.

A window is placed at the requested position even if it is
totally off the screen.

Managing Windows 6·55

The value of the resizeBorderWidth resource is the width of the resize border,
the outermost portion of the window frame. The width is measured in pixels.

The resizeCursors resource has the following values:

True

False

The appropriate resize cursor displays when the pointer enters
a resize border area of the window frame.

The resize cursors are not displayed.

The value of the maximumClientSize resource is the widthxheight (in pixels)
of the maximum size of a maximized client. If this resource isn't specified, the
maximum size is taken from the WM-NORMAL_HINTS window property, or the
default size (the size of the screen) is used.

The Syntax for Size and Position Refinement Resources

The resources that refine your control over the size and placement of windows
have the following syntax:

Mwm* resource: value

For example, you could choose to place each new window on the screen
interactively by adding the following line in your . Xdefaul ts file:

Mwm*interactivePlacement: True

In addition to this syntax, the maximumClientSize resource has two more
forms.

• Use this syntax for specifying the maximum client size for a specific instance
of a client:

Mwm*clientname .maximumClientSize: widthx height

• Use this syntax for specifying the maximum client size for specific classes of
clients:

Mwm*clientclass .maximumClientSize: width x height

For example, you might decide that xload clients should be maximized to no
more than an eighth of the size of your 1024 X 768 display.

Mwm*XLoad.maximumClientSize: 128x96

6-56 Managing Windows

• Use this syntax for specifying the maximum client size for any client with an
unknown class.

Mwm*defaul ts*maximumClientSize: width X height

Controlling Resources with Focus 'Policies
The OSF /Motif Window Manager has three separate focus policies' that you
can use to control the arbitration of resources among clients. The focus policies
determine what happens when a window becomes the active window. The
active window is the window that has the focus of the keyboard and any
extended input devices. When a window is active, the following are true:

• What you type appears in that window.

• The color of the window frame changes to indicate the active focus.

• Input from extended input devices goes to that window.

Each focus policy is controlled by a specific focus policy resource. The focus
policy resources are as follows:

Table 6-23.
Controlling Focus Policies with Window Manager Resources

To control this ... Use this resource ... The default value is ...

Which client window has colormapFocusPolicy keyboard
the colormap focus.

Which client window has keyboardFocusPolicy explicit
the keyboard and mouse
focus.

Managing Windows 6-57

Valid Focus Policies

The following focus policies are valid for the colormapFocusPolicy resource:

keyboard

pointer

explicit

The window manager tracks keyboard input and installs a
client's colormap when the client window gets the keyboard
input focus.

The window manager tracks the pointer and installs a client's
colormap when the pointer moves into the client window or the
window frame around the client. .

The window manager tracks a specific focus-selection operation
and installs a client's color map when the focus-selection
operation is done in the client window.

The following focus policies are valid for the keyboardFocusPolicy resource:

pointer

explicit

The window manager tracks the pointer and sets the keyboard
focus to a client window when the pointer moves into that
window or the window frame around the client.

The window manager tracks a specific focus-selection operation
and sets the key board focus to a client window when the
focus-selection operation is done in that client window.

When the keyboard focus policy is explicit, you can use the passSeIectButton
resource to specify the consequence of the focus-selection operation. If
you give passSeIectButton a value of "True" (the default value), the
focus-selection operation is passed to the client or used by the window manager
to perform some action. If you give passSeIectButton a value of "False," the
focus-selection operation will be used only to select the focus and will not be
passed.

The Syntax of Focus Policy Resources.

The focus policy resources have the following syntax:

Mwm* focusPolicyResource: policy

For example, you could change the keyboard focus policy so that moving the
pointer into a window moved the focus there by adding the following line in
your . Xdef aul ts file:

6-58 Managing Windows

Mwm*keyboardFocusPolicy: pointer

Matting Clients
If you have a color system, you might find it useful to decorate windows based
on client class or client name. For example, you may wish to color code your
hpterm windows so you can easily tell them apart from your xterm windows.

You can accomplish this differentiation by using a matte and the window
manager's matte resources to further frame your client windows. A matte is a
3-D border just inside the window between client area and window frame.

To enable a matte, define a positive matte width for windows of a specific class.
Careful selection of matte elements will give a pleasing 3-D effect.

To define a matte width, use the matteWidth resource. The matteWidth
resource defines the width of the matte or border between the client and the
window frame. The width is given in pixels. For example, to specify a matte of
10 pixels around hpterm windows, you would include the following line in your
. Xdef aul ts file:

Mwm*HPterm.matteWidth: 10

Coloring Individual Matte Elements

The following table lists matte elements and the resources that control their
color.

Managing Windows 6-59

TabJe 6·24.
Coloring Window Frames with Window Manager Resources

To color this ... Use this resource ... The default value is ...

Matte background. matteBackground mwm background

Left and upper bevel of matteTopShadowColor Lightened
matte. matteBackground color.

Right and lower bevel of matteBott .. omShadowColor Darkened
matte. matteBackground color.

Matte foreground. 'matteForeground Darkened
matteBottonShadowColor.

Changing the Tile of Mattes

As with frame colors, the fewer the number of colors your display can produce,
the more interest you will probably have in tiling mattes,. Again, tiling provides
you with a way to "mix" foreground and background colors into a third color.
If you have a 2-color (monochrome) display, you could tile a window matte in
shades of gray to achieve a pleasing 3-D look.

The OSF /Motif Window Manager has the following resources to enable you to
tile mattes.

Table 6·25. Tiling Mattes with Window Manager Resources

To tile this ... Use this; resource ... The default value is ...

Matte right and lower matteBottomShadowPixmap client bottom shadow color
bevels.

Matte left and upper matt eTopShadowP ixmap client top shadow color
bevels.

The following table lists the acceptable values for pixmap resources:

6·60 Managing Windows

Table 6·26. The Values to Use for Tiling Mattes

To tile an element this color mix ... Use this value ...

The foreground color. foreground

The background color. background

A mix of 25% foreground to 75% background. 25Joreground

A mix of 50% foreground to 50% background. 50Joreground

A mix of 75% foreground to 25% background. 75Joreground

In horizontal lines alternating between the foreground and horizontaLtile
background colors.

In vertical lines alternating between the foreground and verticaLtile
background colors.

In diagonal lines slanting to the right alternating between the slanLright
foreground and background colors.

In diagonal lines slanting to the left alternating between the slantJ.eft
foreground and background colors.

The Syntax for Matte Resources

Matte resources can have any of the following three syntaxes, depending on the
situation:

• The first syntax is the most specific. It creates a matte for a particular
instance of a client, identified by the client name. (The client name is
specified by the client's name resource.)

Mwm* clientname* matteResource: value

For example, you could create a 5-pixel-wide LightBlue matte for a particular
hpterm window started as hpterm -name hp850.

Mwm*hp850*matteWidth: 10

• The second syntax specifies the matte for specific classes of clients:

Mwm* clientclass* matteResource: value

Managing Windows 6·61

For example, you could place a different matte around hpterm and xterm
windows by including the following lines in your . Xdef aul ts file:

Mwm*HPterm*matteWidth:
Mwm*HPterm*matteBackground:
Mwm*XTerm*matteWidth:
Mwm*XTerm*matteBackground:

10
SkyBlue
10
Tan

• The third syntax creates a matte for all clients regardless of class:

Mwm*matteResource: value

For example, you could create a lO-pixel-wide yellow matte for every client
window by adding the following lines in your .Xdefaults file:

Mwm*matteWidth:
Mwm*~atteBackground:

Mwm*makeMatteColors:

10
Yellow
all

• The fourth syntax specifies the matte for any client with an unknown class.

Mwm*def aul ts* matteResource: value

Switching Between Default and Custom Behavior
The window manager has a buit-in key binding that allows you to switch back
and forth between customized mwm behavior and default behavior. The key
presses for doing this are @ (Shift) (Ctrl) (D.

The following client-specific resources are affected by this function:

clientDecoration clientFunctions focusAutoRaise windowMenu

6-62 Managing Windows

The following mwm resources are affected by this function:

autoKey Focus button Bindings clientAutoPlace

colormapFocusPolicy configFile deiconify Key Focus

doubleClickTime freezeOn Config iconAutoPlace

iconClick iconDecoration iconImageMaximum

iconImageMinimum icon Placement iconPlacementMargin

interactivePlacement key Bindings keyboardFocusPolicy

limitResize lowerOnIconify maximumMaximumSize

moveThreshold passSelectButton positionIsFrame

posi tion OnScreen quitTimeout resize Cursors

restartSettings startup Key Focus transient Decoration

transientFunctions uselconBox wMenuButtonClick

w MenuButton Click2

What's Next
The next two chapters cover special custom-environment situations. Chapter 7
concerns special hardware-related configurations. Chapter 8 concerns the use of
Starbase graphics and the printing of screen dumps.

Managing Windows 6-63

7
Customizing Special X Environments

Some applications, perhaps yours is one of them, require customization beyond
changing colors, choosing clients for your environment, and modifying window
manager resources. This chapter describes the following "special" X Window
System customizations:

• Using custom screen' configurations.

• Using special input devices.

• Changing mouse key actions

• Going mouseless.

• Customizing keyboard input.

• Creating a custom color database.

• Changing display preferences.

• Compiling bdf fonts into snf format.

• Using xrdb to configure the server.

• Using national languages.

This chapter discusses the following X clients:

xmodmap Modifies keyboard bindings to modifier keys.

xset

rgb

bdftosnf

xrdb

Sets user preferences for display behavior.

Creates a custom color database.

Compiles bdf format fonts into snf format fonts.

Initializes the X server with resource specifications.

More information about these clients is in the reference section.

Customizing Special X Environments 7-1

Using Custom Screen Configurations
The default screen cO!lfiguration for Xll assumes the following about your
system:

• You use display 0 (typically the console).

• You have only one physical display screen.

• Your screen uses only one set of pixel planes (the image planes).

• Your screen is at the address node specified by /dev/crt.

However, the configuration you actually have may differ from the default
configuration. For example, you may be display 1. Or you may be display 0,
but have "two heads" (screens). Or you may be screen 0 on display 0, but have
two sets of planes, image and overlay. There are many possible combinations of
non-default screen configurations.

If you use some configuration other than the default, you must create a custom
screen configuration file for yourself.

The Default Screen Configuration File

The default screen configuration file is located in usr/lib/Xll and is called
XOscreens (x zero screens). The "0" is an arbitrary number chosen to signify
the default display.

XOscreens is an ASCII file. It contains the path and name of the default
screen, bitmap device /dev/crt.

Creating a Custom 'X*screens' File

To tell the server about a custom screen configuration, you need either to
modify XOscreens or to create an X*screens file. The * should be replaced by
a display number signifying the new configuration.

Each X*screens file represents a custom screen configuration and can contain a
maximum of four lines (excluding comments and blank lines).

As an alternative to specifying multiple X*screens files, you can make one
X*screens file for your display. This file will contain the device information
for all the configurations. But only one configuration will be in use at a time;

7 -2 Customizing Special X Environments

the other configurations will be commented out. To switch configurations,
instead of choosing a different X*screens, you edit your single configuration
file, uncommenting only the configuration you want to use.

Choosing a Screen Mode

Although each X*screens file contains lines listing a screen device, the exact
syntax of the lines depends on the screen mode you choose. Depending on your
system's hardware, you may choose from four screen modes:

image mode

overlay mode

stacked mode

combined
mode

The default screen mode using multiple image planes for a
single screen. The number of planes determines the variety of
colors available to the screen.

An alternate screen mode using overlay planes for a single
screen. Overlay planes provide an alternate (auxiliary) set of
planes to the standard image planes. You can see what is in
the image planes only if you open a "transparent" window in
the overlay plane and move the window over what you want
to see. Typically, overlay planes are used in conjunction with
image planes in either stacked mode or combined mode.

A combination of image and overlay planes in which a single
display has two "logical" screens: image planes and overlay
planes. You move between the image and overlay planes
by moving the pointer to the edge of the display. Another
display pops into view. Typically, the image planes are used
for graphics, while the overlay planes are used for text.

A combination of image and overlay planes in which a single
display has a single screen that is a combination of the image
and overlay planes. Starbase or other applications are in
windows that can be moved or resized like any other window.
Combined mode is available only on the TurboSRX 3-D
Display Controller (HP part number 98730A).

Customizing Special X Environments 7-3

Table 7·1.
Graphics Boards, Display Controllers, and Available Screen

Modes

With this
display hardware ... You can use these modes ...

Image Overlay Stacked Combined

HP 9S542A ..;
HP 9S543A ..;
HP 9S544B ..;
HP 9S545A ..;
HP 9S547A ..;
HP 9S54SA ..;
HP 9S549A ..;
HP 9S550A ..; ..; ..;
HP 9S720A ..; ..; ..;
HP 9S730A ..; ..; ..; ..;

Syntax for 'X*screens' File Lines

The syntax for each line of an X*screens file is as follows:

/ dey / device

/ dev / device

depth

{
depth { ~4} [doublebuffer 1 }
depth 16 doublebuffer [# comment]

{
nUmber-in}

monitorsize b
num ermm

Specifies the name of the device file that the X server should
read for this display.

Specifies the number of image and overlay planes available to
the server (one pixel per plane).

7 -4 Customizing Special X Environments

doublebuffer

depth 16
doublebuffer

moni torsize

Specifies double buffer. Double buffering divides video memory
into halves and displays one half while drawing the other.
Double buffering is used specifically with graphics programs
that double buffer their screen output. This avoids "flashing"
during screen redraw.

Specifies the division of the image planes into two 8-bit, double
buffered halves.

Specifies the size of the monitor in inches or millimeters.

Determining the Number of Screen Devices

Each line of the text lists a separate screen device (except in combined mode).
A screen device can be either a physical device, the CRT screen, or the image
planes or overlay planes of a physical device.

For example, if you have a system that includes two physical display screens,
you should create an X*screens file that contains two lines, one for each
physical screen. If you have one physical display screen that is divided into
image and overlay planes, you should create an X*screens file that also
contains two lines. However, the lines will be different.

Mouse Tracking with Multiple Screen Devices

The mouse pointer tracks from left to right. For multiple-plane configuration
files, the order of entry determines the tracking order of the mouse pointer.
The first line in the file is the device on which the pointer appears when you
start X.

Other lines correspond to the screens which appear when the mouse is moved
to the right or left side of the current screen.

Thus the order of the lines is important because it tells the server to which
screen to move the pointer.

Making a Device Driver File

When you specify a device in a screen configuration file, include the path,
usually / dev. The device you specify must correspond to a device file in that
path. If you don't have the appropriate device file, you must make that device

Customizing Special X Environments 7-5

using the HP-UX mknod command. See the "Creating Device Files" section of
HP-UX System Administration Manual for information on mknod.

Examples

The following example shows how you might customize several X*screens files.

Suppose you have a high-resolution (1280x 1024) TurboSRX screen on which
you want to run X Windows and Starbase applications. The image plane of
this screen is accessed by the device file / dev / crt for the Series 300 (dev / crtO
for the Series 800). The overlay plane is accessed by the device file /dev/ocrt
for the Series 300 (dev / ocrtO for the Series 800). You would like to switch
between four different screen configurations:

• One screen with XII running in the image planes (image mode). This
configuration is described in the XOscreens file below.

• Two screens with Starbase running in the image planes and XII running
in the overlay planes (overlay mode). You may have only one Starbase
application running in this mode, and you can see it only if you open a
"transparent" window to look through the overlay planes. This configuration
is described in the Xlscreens file below.

• Two screens running (with XII running in both) on the same display
(stacked mode). One screen runs in the image planes, and the other runs in
the overlay planes. You move between the two screens by moving the pointer
to the edge of the display. The order in which the screens appear is specified
by the order in which their designations appear in the X*screens file.
Starbase is not normally run in this mode. This configuration is described in
the X2screens file below.

• One screen with two visuals, one with depth 24, and the other with depth
8 (combined mode). Starbase applications are run in windows that can be
moved or resized like any other window. You can have several Starbase
applications running at once, each in its own window. This configuration is
described in the X3screens file below. The order in which the screens are
described is unimportant.

7 -6 Customizing Special X Environments

To accomplish this, you need to have the following four screen configuration
files (the entries are slightly different between the Series 300 and Series 800):

XOscreens

Xlscreens

X2screens

X3screens

Containing the line:

/ dey / crt Series 300
/dev/crtO Series 800

Containing the line:

ldev/ocrt
/dev/ocrtO

Series 300
Series 800

Containing the lines:

Idev / crt Series 300
/dev/ocrt
/ dey / crtO Series 800
/dev/ocrtO

Containing the line:

/dev/crt /dev/ocrt depth 24 depth 8
/ Q.ev / crtO / dey / ocrtO depth 24 depth 8

Series 300
Series 800

Note that the first file is the default screen configuration provided with
XlI. The other two files must be created for the particular situation. The
Xlscreens file contains two lines, one for each set of planes. Think of the lines
as- "stacked" for stacked mode. The X3screens file contains one line specifying
both planes. Think of the lines as "combined" for combined mode.

An alternate means of achieving the same end is to modify the XOscreens file
(or create a custom file) to contain all the possible configurations, with all but
the one to be used commented out. The following example shows such a file for
the Series 300:

Default Configuration ###

/dev/crt

Overlay Screens Mode ###

/dev/ocrt

Customizing Special X Environments 7-7

Stacked Screens Mode ###

/dev/crt
/dev/ocrt

Combined Screens Mode ###

/dev/crt /dev/ocrt depth 24 depth 8

Using this method, the name of the file never changes from XOscreens.
Instead, you edit the file, commenting out lines you don't want and
un commenting lines you do want, to switch screen devices.

Either method will work.

Defining Your Display

The DISPLAY environment variable establishes the host, display number, and
screen number to which a system sends bitmapped output. For example, on
Series 300 and Series 800 systems, the console is typically display 0, screen 0 by
default and output is usually sent there.

However, most XII clients have a -display option that enables you to specify
a different host, display number, and screen number on which the client should
display its output. (By default, clients display on the system on which they are
started.)

Specifying a Display with 'x11start'

As mentioned, you can specify a display for your local system or for individual
clients.

The display for your local system, the DISPLAY environment variable, is part
of your system environment and is used by all clients started and displayed
locally.

When you start XII, the xini t client sets the DISPLAY variable to the
hostname of your system, display number 0, screen o.
You can modify this behavior by setting and exporting the DISPLAY variable
before executing xllstart. Your .profile or . login file is a good place to do
that.

7 -8 Customizing Special X Environments

Finding the DISPLAY Variable

You can view the current setting of your system's DISPLAY environment
variable, by typing the following command line:

env (Return)

This causes a list similar to the following to display. The list contains the
current environment settings for your system. Look for the DISPLAY setting.

DISPLAY=hpcvfaa:O.O
HOME=/users/alex
LOGNAME=alex
MAIL=/usr/mail/alex
PATH=/usr/bin/Xll:.:./bin: .. /bin:/bin:/usr/local/bin:/usr/bin:/etc:
SHELL=/bin/csh
TERM=98720
TZ=PST8PDT
WINDOWID=7340052

In this example, the DISPLAY variable is set to "hpcvfaa:O.O."

Resetting the DISPLAY Variable

To reset the DISPLAY variable, do one of the following:

• If you use csh, type the following:

setenv DISPLAY host:display:screen (Return)

• If you use sh or ksh, type the following:

DISPLAY=host:display.screen (Return)
export DISPLAY (Return)

For example, before you started Xl1 using your custom Xlscreens
configuration file, you would issue the following command line for a csh:

setenv DISPLAY host:l.0 [Return)

Customizing Special X Environments 7-9

Making 'X*.hosts' Files for Special Configurations

The default screen configuration file XOscreens uses the default XII remote
host file XO .hosts. The XO .hosts file, you will recall, contains a list of all XII
hosts permitted to access your local server.

Each custom X*screens file requires that you make a special X*.hosts file.
The number represented by the * causes the correct screen and host files to be
used together.

An x* .hosts file is an ASCII text file containing the hostnames of each remote
host permitted to access your local server. The syntax is as follows:

host
host
host

For example, if you were on a network and regularly ran clients on hpcvfaa,
hpcvfcc, and hpcvfdd, you would want the following lines in your x* . hosts file:

hpcvfaa
hpcvfcc
hpcvfdd

Note that aliases work as well as hostnames, provided they are valid, that is,
commonly known across the network.

Using Special Input Devices
The X Window System has an input device file that the X server reads to
find out what input devices it should open and attach to the display. The
default input device configuration file is XOdevices. You can find it in the
/usr/lib/Xll directory.

7 -10 Customizing Special X Environments

The Default 'XOdevices' File

The default file shipped with the X Window System contains lines of text, but
does not specify any input configuration. Rather, it assumes the default input
configuration of one keyboard and one pointer.

If this is your configuration, you may not want to change the contents of the
file for three reasons:

• Clients can request and receive the services of an input device regardless of
whether the device is specified in a device configuration file. Thus, you need
not change the XOdevices file, or create a custom file, even though you have
a custom input configuration.

• Non-clients (terminal-based programs) such as Starbase cannot receive
the services of an input device if the device is specified in the device
configuration file. Any device in the device configuration file is opened for
use by the X server. Thus, changing the XOdevices file, or creating a custom
file, in order to inform the server about a certain input device may interfere
with a non-client's ability to access the device.

• Even if you have other screen configurations, you can rely on the default
input device configuration without having to create an X*devices file to
match every X*screens file. For example, if you had a custom X8screens
file, you would not necessarily need an X8devices file.

A custom X*devices file is required only when you want to tell the X server
about a custom input device configuration.

How the Server Chooses the Default Keyboard and Pointer

Input devices attach to HP computers through an interface known as the
Hewlett-Packard Human Interface Link (HP-HIL). Up to seven input devices
can be attached to each HP-HIL. However, if the X*devices file does not
exist, or does not specify otherwise, the X server recognizes only two devices:
a pointer and a keyboard (clients, however, may still recognize other input
devices).

Customizing Special X Environments 7 ·11

The X server uses the following order when choosing a pointer:

1. If the X*devices file specifies an input device as the pointer, the X server
uses that device as the pointer.

2. If X*devices makes no specification, or there is no X*devices file, the X
server takes the last mouse on the HP -HIL (the mouse farthest from the
computer) as the pointer.

3. If the X server can open no mouse, it takes the last pointer device (knob
box, graphics tablet, trackball, or touchscreen) on the HP-HIL as the
pointer.

4. If the X server can open no pointer device, it takes the last keyboard on the
HP-HIL as the pointer as well as the keyboard.

5. If no pointer can be opened, the server will not run.

The.X server uses a similar order when determining the keyboard:

1. If the X*devices file specifies an input device as the keyboard, the X server
uses that device as the keyboard.

2. If X*devices makes no specification, or there is no X*devices file, the X
server takes the last keyboard on the HP-HIL (the keyboard farthest from
the computer) as the keyboard.

3. If the X server can open no keyboard, it takes the last key device
(buttonbox, barcode reader) on the HP-HIL as the keyboard.

4. If no keyboard can be opened, the server will not run.

Creating a Custom 'X*devices' File

At some point, you may want to instruct the server to open a particular device
as the keyboard or pointer or have the server open another input device as an
extension of the keyboard or pointer. Additional devices with keys are treated
as extensions to the keyboard; additional devices that point are treated as
extensions to the pointer.

To tell the server about a non-default input device configuration, you must
add a device specification line to the appropriate X*devices. For example,
you would use XOdevices if you used XOscreens and X2devices if you used
X2screens.

7 -12 Customizing Special X Environments

X*devices files are ASCII text files. You can use any ASCII text editor to
modify them. Similar to X*screens files, you add a device line to the file for
each input device you want the server to know about.

Syntax

The device specification lines that you add to the X*devices file can have any
of three syntaxes.

The Syntax for Device Type and Relative Position. The following syntax uses
device type and relative position on the HP-HIL to specify input devices:

relativeposition de vice type use [# comments]

relativeposition

devicetype

use

Specifies the position of a device on the HP-HIL relative to
other input devices of the same kind.

Specifies the type of input device.

Specifies whether the device is the keyboard, the pointer, or
has some other use.

Valid positions, types, uses, and examples are in the following section,
"Selecting Values for 'X*devices' Files."

Separate the parts of your entry with tabs or spaces. The position of an input
device on the HP-HIL is relative to other devices of that type. Thus, first
means the device connected closest to the computer on the HP-HIL of any
device of that type.

This syntax is most useful for systems running a single X server with no other
programs directly opening input devices. Here, if you add a new input device
to the HP-HIL, you don't have to edit the X*devices file unless the device is
of the same type as one already named in the file and you add the new device
ahead of that existing device.

This syntax may become ambiguous, however, when more than one X server is
running on the same system or when non-client programs directly access input
devices. _ This is because first actually means first device of that type available
to the server. Thus, a device may be physically first on the HP-HIL, but not

Customizing Special X Environments 7-13

first for the server if the device is unavailable because it is currently being used
by some other program.

The Syntax for Device File Name. The following syntax uses the device file
name to specify input devices:

/path/devicefile use [# comments]

/path/ devicefile Specifies the path and device file to use as the input device.

use Specifies whether the device is the keyboard, the pointer, or
has some other use.

This syntax is unambiguous when several X servers are running on the same
computer or when non-client programs directly access the input device.

The Syntax for Reconfiguring the Path to Device Files. The default path to the
device files is / dev, but you can specify another path if you choose. Also, if you
have more than one HP-HIL, you can specify which HP-HIL the server should
use.

The syntax for this is as follows:

path hil_path [# comments]

path Specifies the path to the device files.

The path specified is handled differently depending on whether your system
is an System 300 or an System 800. System 300s only have a single HP-HIL,
so no matter what path you specify, the server always checks only that path
HP-HIL for input devices to open. For example, if you specify /tmp/foo
hil_path in your X*devices file, the server would attempt to open devices
/tmp/fool through /tmp/foo7 on the HP-HIL.

However, System 800s can have up to four HP-HILs numbered 0 through 3.
For the System 800s, the HIL number you specify is the only place the server
checks for input devices to open. Thus if you specify / dey /hil_2 hil_path,
the server would try to open input devices 1 through 7 on HP -HIL 2 and, if
that failed, would not open any input devices at all. If you specified a path

. that did not end with a digit in the range 0-3, the server would search four

7-14 Customizing Special X Environments

HP -HILs for devices to open using that path as the root of the device file
names. For example, if you specified /tmp/foo hil_path, the server would
attempt to open device files /tmp/fooO.1 through /tmp/fooO. 7, /tmp/foo1. 1
through /tmp/foo1. 7, and so on through /tmp/foo3. 7

Selecting values for 'X*devices' Files

X*devices files use the following special names for positions, devices, and uses:

Table 7-2. Special Names for 'X*devices' Files

Positions Device Type Device Class HP Part Number Uses

first keyboard keyboard 46021A* keyboard

second mouse pointer 46060A* pointer

third tablet pointer 46087A* other

fourth buttonbox keyboard 46086A*

fifth barcode keyboard 92916A*

sixth one.Jcnob pointer 46083A*

seventh nine.Jcnob pointer 46085A*

quadrature pointer 46094A*

touchscreen pointer 35723A*

trackball pointer 80409A*

null

* or equivalent

The nine-knob box appears to the X server as three separate input devices.
Each row of knobs is a separate device with the first device being the bottom
row.

Note also that the HP barcode reader has two modes: keyboard and ASCII.
The modes are set via switches on the reader. If you set the barcode reader to
ASCII transmission mode, it appears to the server as a barcode reader and the
device name is therefore barcode. However, if you set the barcode reader to

Customizing Special X Environments 7 -15

emulate a keyboard, the barcode reader appears as a keyboard and the device
name should therefore be keyboard. What distinguishes a barcode reader set
to keyboard mode from a real keyboard is the relative position or the device
filename, depending on which syntax you use.

Similar to the barcode reader, the trackball appears to the server, not as a
trackball, but as a mouse. Therefore, to specify a trackball, use the mouse
device name. Again, what specifies the trackball instead of the real mouse is
the relative position or the device filename, depending on which syntax you
use.

Configuring an Output-Only X Window System

You can create a system on which the X server runs, but which does not have
any input devices. In this case, clients could be run from a remote terminal, or
from a remote host, and their output directed to the X server.

To create an XII system with no input, include the following lines in the
XOdevices file:

first null
first null

Examples

keyboard
pointer

Suppose your input devices include a graphics tablet, a keyboard, and another
graphics tablet, and you want to use the tablet closest to the computer as the
pointer. You would have the following lines in your X*devices file:

first
second
first

tablet pointer
tablet other
keyboard keyboard

The pointer.
A n extension of the pointer.
The keyboard.

In this example, input from the second graphics tablet would appear as an
extension of the input from the pointer device, the first tablet.

7 -16 Customizing Special X Environments

Now suppose you add another keyboard and a barcode reader (set to ASCII
mode) to the above configuration. Also suppose you want the keyboard
farthest from the computer to be the keyboard device, with the barcode reader
serving as an extension to it. You would have the following lines in your
X*devices file:

first tablet pointer The pointer.
second tablet other An extension of the pointer.
first keyboard other A n extension of the keyboard.
second keyboard keyboard The keyboard.
first barcode other A n extension of the keyboard.

The example now includes input from the first keyboard and from the barcode
reader as extensions of the input from the second keyboard. To the X server,
the input is indistinguishable.

Note that the barcode reader is in ASCII mode in this example. If the barcode
reader were in keyboard mode, the last line of the example should read as
follows:

third keyboard other

In keyboard mode, the barcode reader is merely the third keyboard on the
HP-HIL.

Now suppose you add a nine-knob box to the configuration, but only use the
first two rows of knobs. You would have the following lines in the input device
configuration file (assuming the barcode reader is set to ASCII mode):

first tablet pointer The pointer.
second tablet other An extension of the pointer.
first keyboard other A n extension of the keyboard.
second keyboard keyboard The keyboard.
first barcode other An extension of the keyboard.
first nine_knob other Bottom row, pointer extension.
second nine_knob other Middle row, pointer extension.

Note that specifying an other input device in an X*devices file has certain
consequences. Each input device you specify as other in X*devices is opened
exclusively by the X server. This means that the device is available for clients,
but is not available for direct access by non-client programs. Since it isn't
necessary to list other devices in X*devices for clients to access them, it may

Customizing Special X Environments 7-17

be better to omit other devices from your X*devices file. Include them only if
no Starbase or other non-client programs access them directly.

Changing Mouse Button Actions
Normally, the mouse pointer buttons are mapped as follows:

Table 7-3. Default Mouse Button Mapping

On a 2-button mouse On· a 3-button mouse
To press this ... press this ... press this ...

Button 1 Left button Left button

Button 2 Both buttons simultaneously Middle button

Button 3 Right button Right button

Button 4 Left and middle buttons
simultaneously

Button 5 Middle and right buttons
simultaneously

However, it is possible to change these mappings. Possible reasons for changing
the mapping are:

• Configuring the mouse for a left-handed person.

• Matching OSF /Motif key mapping or other existing key mappings.

Note The default mouse button mapping will change to the
OSF /Motif mapping in a future release of the X Window
System. If you're a System Administrator or application
programmer, keep this in mind when designing applica.tions.

7 -18 Customizing Special X Environments

Table 7-4. Alternative Mouse Button Mappings

To press Left Hand Mapping OSF /Motif Mapping

Button 2-button mouse 3-button mouse 2-button mouse 3-button mouse

Button 1 Right button Right button Left button Left button

Button 2 Both buttons Middle button Right button Middle button
simultaneously

Button 3 Left button Left button Both buttons Right button
simultaneously

Button 4 Middle and Left and
right buttons middle buttons
simultaneously simultaneously

Button 5 Middle and Right and
left buttons middle buttons
simultaneously simultaneously

The xmodmap utility is used to change mouse button mappings. (xmodmap is
also used to change keyboard mappings. That topic is discussed later in this
chapter.)

Changing Mouse Button Mapping with 'xmodmap'

The syntax for changing mouse button mappings with xmodmap is:

xmodmap [-e u [::~:::: : ~::~~; number .. .]] u]

-pp

·""e Specifies a remapping expression. Valid expressions are covered
in "Customizing Keyboard Input" later in this chapter.

default Set mouse keys back to default bindings

number Specifies a list of button numbers to map the mouse keys to.
The order that the numbers appear in refers to the original
button mapping.

Customizing Special X Environments 7 -19

pp Print the current pointer mapping.

For example, to reverse the positions of buttons I and 3 for left-handed
mapping:

xmodmap -e IIpointer = 3 2 111 2-button mouse
xmodmap -e IIpointer = 3 2 1 5 4" 3-button mouse

To establish OSF /Motif-standard button mapping:

xmodmap -e IIpointer = 1 3 2" 2-button mouse
xmodmap -e "pointer = 1 3 2 4 5" 3-button mouse

Going Mouseless with the 'X*pointerkeys' File
Your work situation may lack sufficient desk space to adequately use a mouse
pointer. You may, therefore, want to "go mouseless" by naming the keyboard
(or some other input device) as the pointer.

To go mouseless, you need to have the proper configuration specified in the
X*devices file and to have a special configuration file named X*pointerkeys.
The default X*pointerkeys file is named XOpointerkeys. You can find it in
the /usr/lib/Xll directory. In light of your experience with XOscreens and
XOdevices, you will probably recognize this as no mere coincidence.

The X*pointerkeys file enables you to specify the following:

• The keys that move the pointer.

• The keys that act as pointer buttons.

• The increments for movement of the pointer.

• The key sequence that resets XII.

• The pixel threshold that must be exceeded before the server switches pixel
planes in stacked screen mode.

7 -20 Customizing Special X Environments

Configuring 'X*devices' for Mouseless Operation

If you have only one keyboard and no pointer devices on the HP-HIL, and
you want the keyboard to serve as both keyboard and pointer, you don't have
to change the default configuration of XOdevices. The default input device
configuration automatically assigns the pointer to the keyboard if a pointer
can't be opened by the server.

If you have two or more input devices, you may need to explici~ly specify which
device should be the keyboard and which the pointer.

The Default Values for the 'X*pointerkeys' File

By default, when you configure your keyboard as the pointer, the X server
chooses certain number pad keys and assigns them mouse operations. Some
number pad keys are assigned to pointer movement; other number pad keys are
assigned to button operations.

If you don't need to change the pointer keys from their default specifications,
you don't need to do anything else to use your keyboard as both keyboard
and pointer. However, if you need to change the default pointer keys, you
must edit the XOpointerkeys file or create a new X*pointerkeys file. The
X*pointerkeys file is the file that specifies which keys are used to move the
pointer when you use the keyboard as the pointer.

The default key assignments are listed in the tables in the following section on
customizing the X*pointerkeys file.

Creating a Custom 'X*pointerkeys' File

You need to modify the existing XOpointerkeys file only if the following
statements are true:

• You want to use the keyboard for a pointer.

• You want to change the pointerkeys from their default configuration.

• You use the XOscreens file to configure your display.

You need to create a custom X*pointerkeys file only if the following
statements are true:

• You want to use the keyboard for a pointer.

Customizing Special X Environments 7-21

• You want to change the pointerkeys from their default configuration.

• You use a configuration file other than the XOscreens file to configure your
display.

Syntax

You assign a keyboard key a mouse function (pointer movement or button
operation) by inserting a line in the X*pointerkeys file. One line for ea.ch
action. Lines in the X*pointerkeys file have the following syntax:

function keyname [# comment J

Assigning Mouse Functions to Keyboard Keys

You can assign any mouse function, either a pointer movement or a button
operation, to any keyboard key. However, you should first make sure that the
key you are thus changing the meaning of doesn't already serve some absolutely
vital function.

You can assign keyboard keys to pointer directions by specifying options in an
X*pointerkeys file. The following table lists the pointer movement options,
the X*pointerkeys functions that control them, and their default values=

7 ·22 Customizing Special X Environments

Table 7 .. 5. Pointer Movement Functions

The default
To do this .«. Use this flUlction . , , key is ...

Move the pointer to the left. pointer_left_key keypad_l

Move the pointer to the right. pointe%_right_key keypad_3

Move the pointer up. pointer_up_key keypad_5

Move the pointer down. pointer_don_key keypad..2

Add a modifier key to the point er_key_mod 1 no default
pointer direction keys.

Add a second modifier key to pointer key_lnod2 no default
the pointer direction keys.

Add a third modifier key to PQinter_key_tnod3 no default
the pointer direction keys.

Note that the pointer direction keys are the keypad number keys on the right
side of the keyboa.rd, not the keyboard number keys above the text character
keys.

You can assign keyboard keys to pointer distances by specifying options in a
XOpointerkeys file. The following table lists the options that determine the
distance of pointer movements, the X*pointerkeys functions that control
them, and their default value:

Customizing Special X Environments 7·23

Table 7-6. Pointer Distance Functions

To do this ... Use this function ... The default value is ...

Move the pointer a number of pointer_move 10 pixels
pixels.

Move the pointer using a pointer_modl_amt 40 pixels
modifier key.

Move the pointer using a pointer_mod2_amt 1 pixel
modifier key.

Move the pointer using a pointer_mod3_amt 5 pixels
modifier key.

Add a modifier to the distance pointer_amt_modl no default
keys.

Add a modifier to the distance pointer_amt_mod2 no default
keys.

Add a modifier to the distance pointer_amt_mod3 no default
keys.

7 -24 Customizing Special X Environments

You can assign keyboard keys to mouse button operations by specifying options
in a X*pointerkeys file. The following table lists the button operations, the
X*pointerkeys functions that control them, and their default values:

Table 7-7. Button Operation Functions

The default
To do this ... Use this function ... key is ...

Perform button 1 operations. pointer_button1_key keypad_*

Perform button 2 operations. pointer_button2_key keypad_I

Perform button 3 operations. pointer_button3_key keypad_+

Perform button 4 operations. pointer_button4_key keypad_-

Perform button 5 operations. pointer_button5_key keypad-1

You can change the mapping of buttons on the pointer by using options in the
X*pointerkeys file. The following table lists the X*pointerkeys functions
that control button mapping and their default values. Like xmodmap and xset,
these functions affect only the X pointer, not any extension input devices.

Table 7-8. Button Mapping Functions

The default
To do this ... Use tIns function ... key is ...

Set button 1 value button_1_value 1

Set button 2 value button_2_value 2

Set button 3 value button_3_value 3

Set button 4 value button_4_value 4

Set button 5 value button_5_value 5

You can change the key sequence that exits the X Window System. Also, if
you use both image and overlay planes, you can change the distance you must
move the pointer before you switch planes. The following table lists these

Customizing Special X Environments 7 -25

options, the X*pointerkeys functions that control them, and their default
values:

Table 7-9. Reset and Threshold Functions

The delault
To do this ... Use this lunction ... key is ...

Exit the X Window System reset break

Add a modifier to the exit key. reset_mod1 control

Add a modifier to the exit key. reset_mod2 left..shift

Add a modifier to the exit key. reset_mod3 no default

Set the threshold for changing screen_change_amt 30 pixels
between image and overlay
planes in stacked mode.

The screen_change_amt enables you to avoid switching from one set of pixel
planes to another if you accidentally run the pointer off the edge of the screen.
The screen_change_amt option establishes a "distance threshold" that the
pointer must exceed before the server switches pixel planes. As the previous
table shows, the default width of the threshold is 30 pixels, but acceptable
values range from 0 to 255.

Examples

For example, a common change that you can easily make is to change the
key board '8 0, ~, ffi, and (B keys to be the pointer direction keys. Press the o key and the pointer moves up. This makes perfect sense. Or at least it does
until you try to move the text cursor in your hpterm window. If you reassign
the arrow keys to the pointer, they will no longer work for the cursor.

Fortunately, the X Window System enables you to pick up to three keys from
among the two (Shift) keys, the two (Extend char) keys, and the (CTRl) key and use
them each as a modifier key. A modifier key is a key that, when you hold it
down and press another key, changes the meaning of that other key.

7 -26 Customizing Special X Environments

Modifier keys in the X*pointerkeys file have three functions:

• They specify that a certain operation can't take place until they are pressed.

• They enable you to adjust the distance covered by the pointer during a
movement operation.

• They enable you to change the key sequence that exits you from XII.

For example, you can overcome the problem in the last example by assigning
the (left Shift) key as a modifier to the pointer direction keys. Now, to move the
hpterm cursor to the right, you press CB as usual. To move the x server pointer
to the right, you press (Left Shift) (B.

Specifying Pointer Keys

The following table lists the valid keynames to use when assigning keyboard
keys to mouse functions:

Customizing Special X Environments 7 -27

Table 7-10. Valid Pointer Keynames for Hp 46021A Keyboards

Typewriter Keys:

1

2

3

4

5

6

7

8

9

o

A

B

C

D

E

F

G

H

I

J

Function Keys:

f1

f2

f3

f4

Keypad Keys:

keypad_l

keypad_2

keypad_3

Special Keys:

enter

escape

break

keypadA

keypad_5

keypad_6

stop

menu

system

cursor _down cursor ..right

K

L

M

N

o

P

Q

R

S

T

f5

f6

u

V

W

X

y

Z

tab

capsJock

control

f7

f8

leftJ)hift

--

backspace

[

]

\

blank.f9

blank.flO

keypad_O keypad_ +
keypad_ * keypad_-

return

/
right..shift

right_extend

blank.f11

blank.f12

keypad_7

keypad_8

keypad_9 keypad_/ keypad_enter keypad_period

clear_line

clear_display insert_char prey next

insert Jine delete_char select cursor Jeft

7 -28 Customizing Special X Environments

Examples

If you only have one keyboard and no mouse, and you can live with the default
pointer key assignations, you don't have to do anything else to configure your
system for mouseless operation. To move the pointer to the left 10 pixels, you
would press the CD key on the keypad. To press mouse button 1 you would
press the (!) key on the keypad.

However, suppose you wanted to move only one pixel to the left. Although
the default value of pointer _mod2_amt is one pixel, no key is assigned to the
modifier for that amount. Thus, you would need to edit the XOpointerkeys file
(or create an X*pointerkeys) to include a line assigning one of the modifier
keys to pointer _amt_mod2. The following line in XOpointerkeys assigns the
(Left Shift) key to pointer_amt_mod2:

###pointerfunction
pointer_amt_mod2

key
left_shift

Or suppose you wanted to set up your XOpointerkeys file so that you could
move 1, 10, 25, and 100 pixels. The following lines show one way to specify
this:

###pointer function
pointer_amt_modi
pointer_amt_mod2
pointer_amt_mod3
pointer_move
pointer_modi_amt
pointer_mod2_amt
pointer_mod3_amt

key
left_extend
left_shift
control
i_pixels
iO_pixels
25_pixels
iOO_pixels

With these lines in effect, one press of the CD key on the keypad moves the
pointer 1 pixel to the left. Pressing the left [Extend chad and CD moves the
pointer 10 pixels to the left. Pressing [Left Shift) CD moves the pointer 25 pixels
to the left. And pressing [CTRL) CD moves the pointer 100 pixels to the left.

Customizing Special X Environments 7 -29

Or, take the case previously mentioned where you want to use the arrow keys
for both text cursor and mouse pointer. You could insert the following lines in
your XOpointerkeys file:

"'pointer function
pointer_key_modi
pointer_left_key
pointer_right_key
pointer_up_key
pointer_down_key

key
left_shift
cursor_left
cursor_right
cursor_up
cursor_down

The above lines enable you to use the arrow keys for cursor movement, while
using the shifted arrow keys for pointer movement. Note that it is the (Left Shift)

key only (not the (Right Shift)) that modifies the press of an arrow key from
cursor to pointer movement.

Now take this scenario a step further. Suppose you want to use the arrow
keys to operate the pointer, and you also need the arrow keys to control the
cursor in an hpterm window, but, as luck would have it, another program you
frequently operate uses the shift-arrow key sequence to control its cursor.

The easiest way to solve this dilemma is to call in another modifier. The
following lines illustrate this. Compare them to the previous example.

###pointer function
pointer_key_modi
pointer_key_mod2
pointer_left_key
pointer_right_key
pointer_up_key
pointer_down_key

In this example,

key
left_shift
left_extend
cursor_left
cursor_right
cursor_up
cursor_down

• Pressing the 0 key moves the hpterm text cursor up.

• Pressing (Left Shift) (!) moves the cursor up in the program you frequently
operate.

• Pressing (Left Shift){left Extend chad 0 moves the pointer up.

U sing a similar technique, you can also reassign the (CTRL) (left Shift) (Reset)

sequence that exits XII. You can specify the press of a single key to exit XII,

7 -30 Customizing Special X Environments

or a combination of two, three, or four key presses. Just make sure that the
key sequence you select isn't something you're going to type by accident.

Customizing Keyboard Input
Besides remapping the mouse's pointer and buttons to your keyboard, you can
remap any key on the keyboard to any other key.

Modifying Modifier Key Bindings with 'xmodmap'

To change the meaning of a particular key for a particular X11 session, or to
initialize the X server with a completely different set of key mappings, use the
xmodmap client.

Syntax and Options

The syntax for xmodmap is as follows:

xmodmap

-display

-help

-help

-grammar
-e expression

{
-ve~bose}
-qul.et

, -n

-p
-pm
-pk
-pp

-display host:display

[filename]

Specifies the host, display number, and screen to use.

Displays a brief description of xmodmap options.

Customizing Special X Environments 7 -31

-grammar

-verbose

-quiet

-n

-e

-pm, -p

-pk

-pp

filename

Displays a brief description of the syntax for modification
expressions.

Prints log information as xmodmap executes.

Turns off verbose logging. This is the default.

Lists changes to key mappings without actually making those
changes.

Specifies a remapping expression to be executed.

Prints the current modifier map to the standard output. This
is the default.

Prints the current keymap table to the standard output.

Print the current pointer map to the standard output.

Specifies that the standard input should be used for the input
file.

Specifies a particular key mapping file to be used.

Specifying Key Remapping Expressions

Whether you remap a single key "on the fly" with a command-line entry or
install an entire new keyboard map file, you must use valid expressions in your
specification, one expression for each remapping.

A valid expression is anyone of the following:

Table 7-11. Valid 'xmodmap' Expressions

To do this ... Use this expression ...

Assign a key symbol to a keycode. keycode keycode = keysym

Replace a key symbol expression with another. keysym keysym = keysym

Clear all keys associated with a modifier key. clear modifier

Add a key symbol to a modifier. add modifier = keysym

Remove a key symbol· from a modifier. remove modifier = keysym

7 -32 Customizing Special X Environments

keycode

keysym

modifier

Refers to the numerical value which uniquely identifies each
key on a key board. Values may be in decimal, octal, or
hexadecimal.

Refers to the character symbol name associated with a
key code, for example, KP .Add.

Specifies one of the eight modifier names.

The following are the modifier names available for use in keyboard
customization:

Table 7-12. Valid Modifier Names

Modifier Names

Shift Control Mod2 Mod4

Lock ModI Mod3 Mod5

On Hewlett-Packard keyboards, the modi modifier is set to the (Extend char)

keys (Meta-L and Meta-R). However, any of the modifiers can be associated
with any valid key symbol. Additionally, you can associate more than one key
symbol with a modifier (such as Lock = Shift-R and Shift-L), and you can
associate more than one modifier with a key symbol (for example, control =
Meta-L and Modl = Meta-L).

For example, you can press 0 to print a lower case "d", (Shift) 0 to print a
capital "D", (Extend char)0 to print something else, and (Shift) (Extend char)0 to
print still something else.

The xmodmap client gives you the power to change the meaning of any key at
any time or to install a whole new key map for your keyboard. Like remapping
the mouse, a little forethought goes a long way.

Examples

Suppose you had the unfortunate habit of hitting the ~ key at the most
inopportune moments. You could remove the ~ lock key from the lock
modifier, swap it for the @ key, then map the @ key to the lock modifier. Do
this is by creating a little swapper file that contains the following lines:

Customizing Special X Environments 7 -33

!This file swaps the [Caps] key with the [F1] key.

remove Lock = Caps_Lock
keysy.m Caps_Lock = Fl
keysym F1 = Caps_Lock
add Lock = Caps_Lock

Note the use of the! in the file to start a comment line. To put your
"swapper" file into effect, enter the following on the command line:

xmodmap swapper (Return)

If you use such a swapper file, you should probably have an unswapper file.
The following file enables you to swap back to the original keyboard mapping
without having to exit XII:

!This file unswaps the [F1] key with the (Caps] key.

remove Lock ;; Caps ... Lock
keycode Ox54 = Fl
keycode Ox37 = Caps_Lock
add Lock = Caps_Lock

Note the use of the hexadecimal values to reinitialize the keycodes to the
proper key symbols. You put your "unswapper" file into effect by entering the
following command line:

xmodmap unswapper ~

On a larger scale, you can change your current keyboard to a Dvorak keyboard
by creating a file with the appropriate keyboard mappings. Typically, you
would keep this as a special file in your home directory, giving it some name
like '~.keymap." The easiest way to install your Dvorak keyboard map is by
including a line in your . xllstart file like the following:

xmodmap .keymap

7·34 Customizing Special X Environments

Printing a Key Map

The -pp option prints a list of the key mappings for the current keyboard.

xmodmap -pp

The list contains the keycode and up to four 2-part columns. The first column
contains unmodified key values, the second column contains shifted key values,
the third column contains meta «(Extend char) key values, and the fourth column
contains shifted meta key values.

Each column is in two parts: hexadecimal key symbol value, and key symbol
name.

Creating a Custom Color Database with 'rgb'
Depending on your needs, you may want to make your own custom color
database modeled after the rgb. txt file. The rgb. txt file is the source file
the rgb client uses to compile the two files the server uses for color database
information. Thus, if you listed the files in /usr/lib/X11 that began with
rgb*, you'd find not only rgb.txt, but also the two files rgb.dir and rgb.pag.

The file rgb. txt is the default color data base for the X Window System. The
file is a text file and, in case you haven't looked at it, it contains four columns:
red value, green value, blue value, and color name. The following lines are from
rgb. txt. Note that the red, green, and blue values are given as the decimal
equivalents of their hexadecimal values.

Customizing Special X Environments 7 .. 35

Table 7-13. Some Lines from 'rgb.txt'

Red Green Blue Color Name

47 47 100 MidnightBlue

35 35 117 navy blue

35 35 117 NavyBlue

35 35 117 navy

35 35 117 Navy

114 159 255 sky blue

114 159 255 SkyBlue

As the above lines illustrate, several lines are sometimes necessary to account
for alternate spellings of the same color.

To make a custom color database, start your text editor and open a new file for
your database. Another option is to make a copy of rgb . txt, giving ita new
name, and add, edit, or delete those values.

Use the following steps to add entries to the database:

1. Specify a decimal value for the red aspect of the color.

2. Press the spacebar or (Tab).

3. Specify a decimal value for the green aspect of the color.

4. Press the spacebar or (Tab).

5. Specify a decimal value for the blue aspect of the color.

6. Press the spacebar or (Tab).

7. Specify a color name for the color.

8. Press (Return).

9. Repeat steps 1-8 for the other colors in your custom color database.

10. Save your new database file and exit the editor.

7 -36 Customizing Special X Environments

To get the other two files, the ones used by the server, use the rgb client. The
rgb client has the following syntax:

rgb outfile < in file

where infile is the name of your custom database, the text file you created.
The rgb client will create outfile. dir and outfile. pag. Note that if you choose
to modify the existing rgb. txt (make a backup copy if you do), you must run
it through the rgb client before any changes take effect.

To put your new color database into effect, you must add it to your xllstart
command line. For example, if your new database is composed of the files
2brite.txt, 2brite.dir, and 2brite.pag, type the following command line to
start your X environment:

xllstart -- -co 2brite (Return)

The server by default looks in the /usr /lib/Xll directory for information and
this example assumes that that is where your 2bri te* files are.

Changing Your Preferences with 'xset'
The xset client allows you to change your preferences for display options.
These preferences last for the length of the X Window System session.

Syntax and Options

The syntax for xset is as follows:

Customizing Special X Environments 7 -37

xset

J :h{ :=f 1 volume [• pitch. [• dumtion 1 1 })

l:{ ~~~1001 })

-fp path [,path ...]

fp- path[,path ...]

+fp path [,path ...]
fp+ path [,path ...]

{
default }

fp path [,path ...]

fp= path
fp rehash

m {
acceleration threshold}
default

p pixel color

m {default}
p number

{:r{ :~f} }

s

q

length period

blank
noblank
expose
noexpose
default

on
off

-display host:display.screen

7 -38 Customizing Special X Environments

-b

bon/off

b v[p[d]]

-c

con/off

c 0-100

-fp/fp­

+fp/fp+

fp default

fp path

fp= path

fp rehash

m acceleration
threshold

m default

p pixel color

Turns the bell off.

Turns the bell on or off.

Specifies the bell volume, pitch, and duration. Volume is a
percentage between 0 and 100 and can be specified without
specifying pitch and duration. Pitch is in hertz and is specified
together with a volume. Duration is in milliseconds and is
specified with both volume and pitch. If only one parameter is
given, it is taken as the volume. If two parameters are given,
they are taken as volume and pitch.

Turns the key click off.

Turns the key click on or off.

Specifies the key click volume as a percentage between 0 and
100.

Removes the specified directories from the font path.

Prefixes or appends the specified directories to the font path
(depending on the position of the +).

Restores the default font path.

Specifies the font path, absolutely.

Sets the font path.

Causes the server to reread the fonts. dir file and the
fonts. alias files in each path of the server's font path.

Specifies the acceleration and threshold of the mouse.
Acceleration indicates the change in mouse speed (for example:
2=double, 3=triple). Threshold indicates the number of pixels
of movement required before acceleration takes place. If only
one number is given, it is taken as the acceleration.

Resets the mouse acceleration and threshold to their default
values.

Controls color on a per pixel basis. Pixel is an integer
representing a specific pixel in the X server's colormap. The

Customizing Special X Environments 7 -39

exact number of pixels in the colormap depends on your
hardware. Color specifies the color that pixel should be.

pm default Restores the default font button codes to the pointer map.

pm number Specifies the button codes for pointer map entries.

-r Turns autorepeat off.

r on/off Turns autorepeat on or off

s length period Sets the screen saver option on. Length is the number of
seconds that the server must be inactive before the screen
is blanked. Period is the number of seconds a particular
background pattern will be displayed before changing it.

s blank Specifies that the screen saver should blank the video,
if permitted by your hardware, rather than display the
background pattern.

s noblank Specifies that the screen saver should display the background
pattern rather than blank the video.

s expose Specifies that the server should discard window contents.

s noexpose Specifies that the server should not enable the screen saver
unless it saves window contents.

s default Sets the system to its default screen saver characteristics.

s on/off Sets the screen saver feature on or off.

q Displays the current settings.

-display Specifies the host, display number, and screen to be reset with
xset.

Examples

To list the current settings for your system, use the following command line:

xset q (Return)

7 -40 Customizing Special X Environments

The following example speeds up the mouse so that you only have to move it
a quarter of the distance you normally would to move the pointer across the
screen.

xset m 4 2 ~

Note Hardware limitations and implementation differences may affect
the results of the xset program.

To return to the default settings without leaving XII, type the following
command:

xset m 1 1 (Return)

Compiling Bitmap Distribution Fonts into Server Natural
Format
The X Window System fonts that you select and that the server then uses to
display text can be in either of two font formats: server compressed format
(scf) or server natural format (snf). Both formats function the same. However,
the compressed format takes up less storage space on disk but must be
uncompressed by the server for use.

Which format a font is in is signified by the extension that appears after the
font file name. A . scf signifies a compressed format; a . snf signifies a natural
(uncompressed) format.

You can compress an snf font file using the HP-UX compress command. You
can uncompress an scf font file using the HP-UX uncompress command.

The X Window System includes a font compiler, bdftosnf, which enables you
to convert a font in bitmap distribution format (BDF 2.1) into server natural
format.

Customizing Special X Environments 7-41

Syntax and Options

The syntax for bdftosnf is as follows:

bdftosnf

-p

-1

-L

-m

-M

-w

-w

-t

-1

filename

filename > font. snf

-v
-w
-t

-i

Specifies that font characters should be padded on the right
with zeros to the boundary of word number where number is 1,
2,4, or 8.

Specifies the output of bdftosnf to be least significant byte
first.

Specifies the output of bdftosnf to be least significant bit first.

Specifies the output of bdftosnf to be most significant byte
first.

Specifies the output of bdftosnf to be most significant bit
first.

Print warning if the character bitmaps have bits set to one
outside of their defined widths.

Print warning for charcters with an encoding of -1. The default
is to ignore such chara.cters.

Expand glyphs in "terminal emulator" fonts to fill the
bounding box.

Don't correct ink metrks for "terminal emulator" fonts.

Specifies the name of the bitmap distribution format font to
convert to server natural forma.t.

7 -42 Customizing Special X Environments

Note that bdftosnf by default sends output to standard output (typically the
screen). To capture the output as a .snf file, therefore, you must redirect the
output as shown in the above syntax. Be sure to include the . snf filename
extension.

Example

The following example takes a bitmap distribution bitmap font file named
tmrm12b. bdf, converts it to an snf file, then compresses it into an scf file:

compress < tmrm12b.snf > tmrm12b.scf ~

Note that the compress command does 'not willingly create a . scf file, so you
have to mv or cp the compressed tmrm12b. snf . Z file to tmrm12b. scf.

Using 'xrdb' to Configure the X Server
If you have no .Xdefaults file in your home directory, the xl1start command
uses the xrdb client to load /usr/Iib/Xllsys .Xdefaults into the server's
RESOURCE_MANAGER property. The RESOURCE_MANAGER property
contains the list of resources available to the server including the specifications
for client colors, keyboard focus policy, and other, similar configurable
resources.

You can use xrdb to load a custom resource configuration file into the server's
RESOURCE_MANAGER property. This enables you to load a resource file
that contains conditional statements. You can define one set of resources for
use in one particular situation while having another set of resources defined for
a different situation.

The benefit of reading the file into the server, instead of having it on disk, is
that the server doesn't have to keep reading the file each time you start a new
client. Additionally, if you start remote clients and display them on your local
screen, the clients will use your local colors. Without a . Xdef aul ts file on the
remote host, the clients would appear on your display in their default colors.

Customizing Special X Environments 7 -43

How Applications Get their Attributes

The X Window System uses multiple configuration files. An application can
get its color and other attributes from several different files. Therefore, how an
application gets its attributes (for example, its foreground color) might, on
occasion, seem a little mysterious.

Where to Find Attributes

You can find application attributes specified in any of the following places:

• A command line may contain attribute options. These options are good for
only that one instance of the application. A command-line option is the
equivalent of a client. resource statement in a .Xdefaults file.

• The XENVIRONMENT environment variable, if present, may contain the name of
a file that specifies application attributes.

• A . Xdefaul ts-host file in your home directory may contain application
attributes to be used for a specific remote host. A . Xdefaul ts-host file is
only read if no XENVIRONMENT variable exists.

• The RESOURCE--11ANAGER property of the server may contain attributes
from a file loaded into the server with xrdb.

• A .Xdefaults file in your home directory, or a sys.XdefauIts file in
/usr/lib/X11 may contain application attributes to be used on your local
system. The. Xdefaul ts file is read only if no file has been loaded into the
RESOURCE_MANAGER property. The sys .Xdefaults file is only read if
no . Xdef aul t s file exists in your home directory.

• The /usr/Iib/X11/app-defaults directory may contain application-specific
configuration files that specify attributes for a particular application. An
app-defaul ts file is the equivalent of a Class*resource statement in an
. Xdefaul ts file.

• An application may have internal defaults that specify attributes when no
resource configuration files exist.

The following figure presents the hierarchy of resource configuration files.
A resource in a source to the top or left of the figure will override the same
resource in a source lower or more to the right. For instance, a resource
specified in the .Xdefaults file will override a resource in the app-defaults

7 ·44 Customizing Special X Environments

file; but a resource specified in the command line will override the .Xdefaults
specification.

Figure 7-1. The Heirarchy of Resource Configuration Files

Command-Line Option

.IJ.

$XENVIRONMENT if existent, else =>

RESOURCE_MANAGER property if existent, else =>

/usr/lib/Xll/app-defaults

Internal Application Defaults

. Xdefaults-host

.Xdefaults

if existent, else .IJ.

/usr/lib/Xl1/sys.Xdefaults

Another way to view this figure is to note that the figure is additive
from top to bottom, but exclusive from left to right. In other words,
if a resource isn't specified on the command line, it is added from the
$XENVIRONMENT variable, if set. If set, no resource specifications come
from .Xdefaults-host. Likewise, the resource specification could come from
the RESOURCE_MANAGER property; and if so, no resource specifications
come from .Xdefaults.

Class Struggle and Individual Identity

Additionally, the visible outcome of any attribute specification is influenced
by whether that specification is for an individual resource or for a class of
resources.

An individual resource begins with a lowercase letter. For example,
foreground refers to· the foreground resource. A class resource, however,

Customizing Special X Environments 7 -45

begins with an uppercase letter. For example, Foreground refers to the the
entire class of foreground resources.

Thus, if no other specifications overruled, the line *foreground: blue in
your .Xdefaults file would make all foregrounds blue. However, the line
*Foreground: blue would make all resources that belonged to the Foreground
dass blue. This would include such resources as foreground; cursorColor;
pointerColor; bottomShadowColor for softkeys, mwm, icons, and mattes; clock
hands; and highlight.

"the Order Of Precedence Among Attributes

In general, follow this rule of thumb to determine the effect of a resource
specification:

A more detailed specification takes precedence over a less detailed specification.

For example, suppose you included the following lines in your .Xdefaults file:

*Foreground: red
HPterm*Foreground: DarkSlateGray
HPterm*foreground: coral
HPterm*cursorColor: green

The first line makes all resources of the class Foreground red. The second line
overrules the first line, but only in the case of clients of class HPterm (of which
there is only one-the hpterm client itself). Line two makes the Foreground
class resources of all hpterm cHents DarkSlateGray. Lines three and four give
hpterm clients coral foregrounds and green cursors respectively, while the other
resources of class Foreground (pointerColor, cursor Color , soft key foreground
and bottomShadowColor, and scrollbar foreground and bottomShadowColor)
remain DatkSlateGray for hpterm clients.

Naming a Client

Additionally, you can give a client of some class a name. This allows you to
allocate resources to that client by class, by client, and by name.

For example, HPterm is a client class. The hpterm window is a client of that
class. :aut~ using the following syntax, you can also give an hpterm client of the
HPterm class a name:

7 -46 Customizing Special X Environments

client. name: name

Thus, you could add three lines to the preceding lines and have the following
specifications in your .Xdefaults file:

*Foreground:
HPterm*Foreground:
HPterm*foreground:

red
DarkSlateGray
coral
green HPterm*cursorColor:

hpterm. name:
BWterm*Foreground:

BWterm #Monochrome hpterm window
black

BWterm*Background: white

This illustrates the ability to create a named window, 'in this case a black and
white hpterm window, that overrides the specifications for class and client
resources. In this example, all hpterm windows will be named BWterm. To start
an hpterm window with another name (for instance special), type hperm -n
special.

Syntax and Options

The syntax for xrdb is as follows:

xrdb

-help

{ -cpp } path/filename
-nocpp

-symbols
-query

I
-load path/filename)
-merge path/filename
-remove
-edit path/filename

- backup string
-Dname[= value]
-Uname
- I path/directory
-display host:display

[filename]

Customizing Special X Environments 7 -4 7

-help

-display

-query

-load

-merge

-remove

-edit

-backup

-cpp

-nocpp

-symbols

-Dname

-Uname

Displays a list of options for xrdb.

Specifies the host and display of the server to be loaded with
the configuration information.

Displays the current contents of the server's
RESOURCE~ANAGER property.

Specifies that xrdb should load the file named on the command
line into the RESOURCE_MANAGER. property, overwriting
the current resources listed there. This is the default action.

Specifies that xrdb should load the file named on the command
line into the RESOURCE_MANAGER property, merging the
new resources with the current resources instead of overwriting
them.

Removes the current configuration file from the
RESOURCE~ANAGER property.

Places the contents of the RESOURCE_MANAGER property
into the named file, overwriting resources specified there.

Specifies a suffix to be appended to the filename used in the
-edi t option to create a backup file.

Specifies the path and filename of the C preprocessor to
use when loading a configuration file containing #ifdef
or #include statements. xrdb works with CPP and other
preprocessors as long as they accept the -D, -U, and - I
options.

Specifies that xrdb should not use a preprocessor before
loading the configuration file (the file contains no statements
that need preprocessiong).

Displays the symbols currently defined for the preprocessor.

Defines a symbol for use with conditional statements in the
configuration file used by the RESOURCE_MANAGER
property.

Removes a defined symbol from the RESOURCE_MANAGER
property.

7 ·48 Customizing Special X Environments

-Ipath/directory Specifies the search path and directory of #include files used
in the RESOURCE_MANAGER.

Examples

The xrdb client enables you to swap resource configuration files in and out of
the X server's RESOURCE_MANAGER property. For example, suppose you
need to keep switching between your .Xdefaults configuration and a special
/proj ects/proto . defaults configuration that contains different color resource
specifications. To change to proto.defaults, type the following:

xrdb -nocpp -load /projects/proto.defaults [Return)

To see that the resources have actually been swapped, type the following:

xrdb -query (Return)

Any new clients started now will have the colors specified in proto . defaults.
To change your existing colors to the proto.defaults colors, restart the
window manager.

As another example, suppose you are the system administrator of an
System 300 diskless cluster and that the cluster includes several different
types of monitors. One option that xrdb gives you is the ability to create a
/usr/lib/Xll/syscus .Xdefaults file containing resource modules headed by
ifdef statements-one ifdef statement for each of the different monitor types.
In each user's . xllstart script, you replace the existing line calling xrdb with
the following:

xrdb /usr/lib/Xll/syscus.Xdefaults

The C language preprocessor reads the class of the monitor (StaticGray,
PseudoColor, etc.) passed to it by xrdb and, based on that information, select
the correct ifdef module.

As an elaboration of this, you could include a special module in
syscus . Xdefaul ts for novice users (giving them a simplified environment) by
placing the following line in their. xllstart file:

xrdb -DUSER=beginner /usr/lib/Xll/syscus.Xdefaults

Customizing Special X Environments 7·49

This line would select the correct monitor module for the novice's monitor,
while tempering the usual resources for that monitor type with resources from
the beginner module.

Using Native Language Input/Output
Though most character sets are composed of 8-bit characters, some languages
(Japanese, Chinese, and Korean) have larger character sets that require 16-bit
characters. The X Window System supports the use of 16-bit character input
with the Native Language Input/Output (NL I/O) subsystem.

To use NL I/O you must have the following:

• The NL I/O subsystem properly installed on your system.

• The appropriate language keyboard or an ASCII keyboard. A client that
uses XHPSetKeyboardMapping allows NL I/O to be used with any language
HP keyboard.

• The appropriate NL I/O fonts installed in the /usr/lib/Xll/fonts correct
directory: .

/usr/lib/Xll/fonts/hp_japanese/
/usr/lib/Xll/fonts/hp_chinese_s/
/usr/lib/Xll/fonts/hp_chinese_t/
/usr/lib/Xll/fonts/hp_korean/
/usr/lib/Xll/fonts/hp_katakana/

Configuring 'hpterm' Windows for NL I/O

erm window to display NL I/O. The process uses the
and soft keys available with hpterm windows

to configure the window for NL I/O. Follow the steps outlined in the Native
Language I/O System Administrator's Guide (HP 92559-90002) and the Native
Language I/O Access User's Guide (HP 92559-90001).

This configures the hpterm client. You must also select the appropriate NL I/O
font.

7 -50 Customizing Special X Environments

Specifying an NL I/O Font

NL I/O fonts are part of the NL I/O product. They are installed in the
subdirectories of /usr/lib/Xll/fonts directory when you install your NL I/O
subsystem.

You specify an NL I/O font exactly like you specify any other font. For
example, if you want to create an hpterm window that uses the Japanese font
jpn.8x18, use the following command line:

hpterm -fn jpn.8x18 & [Return)

Where to Go Next
The next chapter discusses X Window System printing and screen dumping
utilities. The chapter after that, chapter 9, discusses the X Window System as
an environment for Starbase applications.

Customizing Special X Environments 7 -51

8
Printing and Screen Dumps

The X Window System includes clients that enable you to do screen dumps. A
scr€en dump is an operation that captures an image from your screen and saves
it in a bitmap file. You can then redisplay, edit, or send the file to the printer
for hardcopy reproduction.

Read this chapter if you need to "take a picture" of something on the screen
for future use or if you want to print what is on your screen.

This chapter discusses the following topics:

• Making a screen dump.

• Displaying a screen dump.

• Printing a screen dump.

Making and Displaying Screen Dumps
Xll windows can be dumped into files by using the xwd client. The files can be
redisplayed on the screen by using the xwud client.

Making a Screen Dump with 'xwd'

The xwd client allows you to take a "picture" of a window that is displayed on
the screen and store it in a file. The filed picture can then be printed, edited,
or redisplayed. You select the window to be dumped either by clicking the
mouse on it or by specifying the window name or id on the command line.

The resulting file is called an xwd-format bitmap file or an xwd screen dump.
All of the figures used in this manual are xwd screen dumps.

Printing and Screen Dumps 8·1

Syntax and Options

The syntax for xwd is as follows:

xwd

-help

-id

-add

-name

-root

-nobdrs

-out

>

-xy

-display

-help

{ =!::: name}
-root

-add value
-nobdrs

{
> filename }
-out filename

-xy
-display display

Provides a brief description of usage and syntax.

Specifies the window to be dumped by its id rather than using
the mouse to select it.

Adds value to every pixel.

Specifies the window to be dumped by its name rather than
using the mouse to select it.

Specifes that the window to be dumped is the root window.

Dumps the window without borders.

Specifies that the screen dump is to be stored in the file
filename.

Specified that the screen dump is to be stored in the file
filename.

Selects 'XY' format of storage instead of the default 'Z' format.

Specifies the screen that contains the window to be dumped.

Example 1: Selecting a Window with the Pointer

This example stores a window in a file named savewindow, using the pointer to
determine which window you want.

8-2 Printing and Screen Dumps

1. Display the an hpterm or xterm window.

2. Type:

xwd -out savewindow (Return)

The pointer changes shape, signifying you can select a window to dump.

3. Move the pointer into the window you want to dump. Press and release any
pointer button. After the image is captured, the cursor changes back to its
normal shape and the window is stored in the file savewindow.

Example 2: Selecting a Window with a Name

If you know the name of the window you want to dump, you don't need to use
the pointer at all. This example dumps the window named "calendar" to a file
named calendar. dump.

xwd -name calendar -out calendar.dump (Return)

Displaying a Stored Screen Dump with 'xwud'

The xwud client allows you to display an xwd-format file on your monitor. You
could have created the file earlier with xwd or translated it from another format
into xwd format.

Note The image to be restored has to match the depth of the system
on which it is to be restored. For example, a.n image created
and stored using a depth of four cannot be restored on a
system with a different depth.

Syntax and Options

The syntax for xwud is as follows:

xwud
[

-help 1
- in filename
-inverse
-display host:display.screen

-help Displays a brief description of the options.

Printing and Screen Dumps 8-3

-in

-inverse

-display

Example

Specifies the file containing the screen dump.

Reverses black and white from the original monochrome dump.

Specifies the screen on which to display the dump.

This example displays the bitmap file myfile.

xwud -in myfile ~

Printing Screen Dumps
Before you can print the screen dump, you need to ensure that your printer is
connected and talking to your computer.

If you are the system administrator, refer to the HP- UX System Administrator
Manual for information about these tasks. If you're not the system
administrator, ask the person who is to perform these tasks:

• Connect the printer to your computer.

• Create a device file for the printer on your computer.

• Run the print spooler.

Printing Screen Dumps with 'xpr'

xpr prints a screen dump that has been produced by xWd.

8·4 Printing and Screen Dumps

Syntax and Options

xpr

-scale

-density

-height

-width

-left

-top

-header

-trailer

-scale scale
-dens i ty dpi
-height inches
-width width
-left inches
-top inches
- header caption
-trailer caption

{
-landsc~pe}
-portral.t

-rv

-compact

{
-output filename}
-append filename

-noff

-split n

-device dev
-cutoff level
-noposition

filename

Specifies a multiplier for pixel expansion. The default is the
largest that will allow the entire image to fit on the page.

Specifies the dots per inch for the printer.

Specifies the maximum height in inches of the window on the
page.

Specifies the maximum width in inches of the window on the
page.

Specifies the left margin in inches. The default is centered.

Specifies the top margin in inches. The default is centered.

Specifies a caption to print above the window.

Specifies a caption to print below the window.

Printing and Screen Dumps 8-5

-landscape

-portrait

-rv

-compact

-output

-append

-noff

-split

-device

-cutoff

-noposition

filename

Prints the window in landscape mode. The default prints the
long side of the window on the long side of the paper.

Prints the window in portrait mode. The default prints the
long side of the window on the long side of the paper.

Reverses black and white from the original screen.

Provides efficient printer directions for a window with lots of
white space (PostScript printers only).

Specifies a file to store the output in.

Adds the window to the end of an existing file.

Specifies that the window should appear on the same page as
the previous window. Used with -append.

Prints the window on n pages. Not applicable to HP printers.

Specifies the printer to use.

ljet

pjet

ljetxl

In03

lalOO

ps

pp

HP LaserJet series, HP ThinkJet, QuietJet,
RuggedWriter, HP2560 series, HP2930 series,
other PCL devices.

HP PaintJet (color mode).

HP PaintJet XL.

DEC LN03.

DEC LAIOO.

PostScript printers.

IBM PP3812.

Specifies intensity for converting color to monochrome for
printing on a LaserJet printer.

Bypasses header positioning, trailer positioning, and image
positioning commands for the LaserJet and PaintJet printers.

Specifies the xwd file to print.

8-6 Printing and Screen Dumps

Example

Suppose you want to print a xwd file named myfile that you previously created
with xwd. You want to print the file on a LaserJet printer in portrait mode
with black and white the reverse of the original xwd file.

xpr -device Ijet -portrait -rv myfile I Ip -oraw ~

Reversing colors is often used when preparing illustrations for documents. The
original illustration can be done in white with a black background, which is
easy to see on computer displays, but reversed to give a black drawing on a
white background, which is common in printed material.

Moving and Resizing the Image on the Paper

You may not always want to have the image print exactly in the same size or
location as the default choices place it.

Sizing Options

The three sizing options for xpr are:

-scale

-height

-width

Each bit of the image is translated into a grid of the size you
specify. For example, if you specify a scale of 5, each bit in the
image is translated into a 5 by 5 grid. This is an easy way to
increase the size without refiguring the height and width.

The maximum height in inches of the image on the page.

The maximum width in inches of the image on the page.

The actual printed size could be smaller than -height and -width if other
options, such as the orientation ones, conflict with them.

Location Options

The two location options for xpr are:

-left

-top

The left margin in inches.

The top margin in inches.

If -left is not specified, the image is centered left-to-right. If -top is not
specified, the image is centered top-to-bottom.

Printing and Screen Dumps 8-7

Orientation Options

The two orientation options to xpr are:

-landscape The image is printed so that the top of the image is on the
long side of the paper.

-portrait The image is printed so that the top of the image is on the
short side of the paper.

If neither option is specified, xpr will position the image so that the long side
of the image is on the long side of the paper. However, you can force it to print
either in landscape mode or portrait mode by using the appropriate option.

Unless told otherwise by the sizing options, xpr makes the image as big as
necessary to fit in the orientation specified.

Printing Multiple Images on One Page

xpr normally prints each image on a separate page. The -noff option is used to
print more than one image on a page.

Printing Color Images

Printing Color Images on a PaintJet Printer

Use the device name pjet to direct output to a PaintJet printer.

For example, the following command prints a xwd file named myfile on a
PaintJet.

xpr -device pjet myfile (Return)

Printing Color Images on a LaserJet Printer

Color images printed on a LaserJet printer will be in black and white instead of
color.

xpr prints only in black and white, no shades of gray. If your original color
image contained many colors of the same intensity, the Laser J et version may
be all light or all dark. If that happens, use the -cutoff option to change the
mapping of color intensities. Anything above the cutoff value is white and
anything below is black. Note that the default cutoff value is 50 percent.

8·& PriRting and Screen Dumps

If you want color images to print in shades of gray on your Laserjet, use the
StarBase utility pcltrans instead of xpr. Refer to the StarBase documentation
for information ..

Where To Go Next
Only one chapter left! Chapter 9 covers using the powerful Star base graphics
library from XII.

Printing and Screen Dumps 8-9

9
Using Starbase on X11

Starbase is a powerful graphics library from Hewlett-Packard. It provides
two-dimensional and three-dimensional graphics, a variety of input and output
capabilities, and high performance features, such as hidden surface removal,
shading, and light sourcing.

This chapter describes how XII interacts with Starbase. It does not describe
Starbase itself. For detailed information about Starbase features, refer to
Starbase Programming with Xll in the Starbase documentation.

This chapter covers the following topics:

• Using the X*screens file to control display options.

• Starting the XII server.

• Opening and destroying windows for Star base applications.

• Creating transparent windows.

• Conversion utilities.

Using the X·screens File
This section reviews some concepts that you need to understand before starting
Starbase applications:

• X*screens file.

• Monitor Type.

• Operating modes.

• Double buffering.

Using Starbase on X11 9-1

The X*screens file is a system file that contains the screen configurations you
want to use. Before you run a Star base application, you should ensure that the
configuration is correct for Starbase. The X*screens file is described in chapter
7.

The following sections describe options you should be aware of when running
Starbase on Xl1. It also explains how to specify those options in the
X*screens file. If the X*screens file you are using doesn't have the correct
entries to do what you want, edit it to include the correct information.

Generally, once you have modified the X*screens file, you won't have to
change it again unless you add a new monitor.

Monitor Type

Starbase can run on a wide variety of graphics monitors. More sophisticated
monitors provide a wider choice of options. The following table shows which
options are available for different monitors.

9-2 Using Starbase on X11

Table 9·1. Display Hardware and Available Options

With this display
hardware ... You can use these options ...

HP Part Number Maximum Planes (colors) Modes Double Depth
buffer

HP 98542A 1 Image (monochrome) Image

HP 98543A 4 Image (monochrome) Image ..;
HP 98544B 1 Image (monochrome) Image

HP 98545A 4 Image (monochrome) Image

HP 98547A 6 Image (64) Image ..;
HP 98548A 1 Image (monochrome) Image

HP 98549A 6 Image (64) Image ..;
HP 98550A 2 Overlay (4) Image ..;

8 Image (256) Overlay
Stacked

HP 98720A 3 Overlay (8) Image ..; ..;
8-24 Image (256 from Overlay
16 million) Stacked ..; ..;

HP 98730A 4 Overlay Image ..; ..;
8-24 Image (256 from Overlay
16 million) Stacked ..; ..;

Combined ..; ..;

Operating Modes

Image and Overlay Planes

Monitors can have two kinds of display planes, image and overlay. The image
plane allows the monitor hardware to help the graphics commands run faster
and more efficiently.

Using Starbase on X11 9·3

Server Operating Modes

The operating mode results from the way you specify the image and overlay
screens in the X*screens file.

The four different modes are:

Overlay mode The XII server operates only in the overlay planes. Starbase
can display in its "raw" mode, writing directly to the image
planes, rather than to a window. A "transparent" overlay
window can look through to the Starbase display in the image
planes. The Starbase double buffering feature does not apply
in this mode.

Image mode This is the only mode available on those displays that do not
have overlay planes. Even if overlay planes are available, you
may want to use image mode to have a greater number of
colors available.

Stacked screen In this mode, the image planes are treated as one screen and
mode the overlay planes as another, separate screen, providing twice

as much screen space. The pointer is moved to the edge of the
display to switch between the overlay and image planes.

Combined This mode (available only on the HP 98730A) treats the
mode overlay and image planes as a single device that provides

multiple window types to client programs.

These modes are also described in chapter 7.

Monochrome monitors and low-level color monitors run in the image mode.

Documentation for the Starbase application program will tell you which mode
or which plane the application expects.

The following examples show how X*screens entries vary for each mode.

Example 1: Image Mode

This example shows an image mode entry in the X*screens file. The same
entry is used regardless of the type of monitor. The number of colors available
to you depends on the monitor. The entry may also have the options discussed
in the next few sections.

9·4 Using Starbase on X11

/dev/crt
/dev/crtO

Series 300
Series 800

Example 2: Overlay Mode

This example shows an overlay mode entry in the X*screens file for monitors
that support overlay mode. The number of colors you are able to use depends
on your display adaptor. Only one Starbase application can be run at a time in
this mode, and you can see it only if you open a "transparent" window in the
overlay plane to look through the overlay plane to the image plane.

/ dey / ocrt Series 300
/ dey / ocrtO Series 800

Example 3: Stacked Mode

This example shows the entries for stacked mode for monitors that are able
to support stacked mode. Star base applications are not generally run in this
mode. Stacked mode is indicated by having each entry on a separate line.
Image plane entries can have the options discussed in the next few sections.
Note that the order of the entries determines the order of the screens. Screen 0
is the first entry, screen 1 is the second entry, and so on.

/ dey / crt Series 300
/dev/ocrt
/ dey / crtO Series 800
/dev/ocrtO

Example 4: Combined Mode

This example shows how a combined mode entry is made in the X*screens
file for monitors that support combined mode. You can have several Starbase
applications running at the same time, each in its own window that can be
moved or resized like other windows. Combined mode is indicated by having
the entries for the overlay and image planes on the same line (it is unimportant
which entry is first). Image plane entries can have the options discussed in the
next few sections.

/dev/ocrt /dev/crt
/dev/ocrtO /dev/crtO

Series 300
Series 800

USing Starbase on X 119-5

Double Buffering

This feature does not apply to monochrome monitors or when the XII server is
running in the overlay planes.

Double buffering means that Starbase uses half of the color planes of your
monitor to display to the screen, and uses the other half to compute and draw
the next screen display. This provides smooth motion for animation, and it is
also faster. However, double buffering reduces the number of colors available
for displaying on the screen at one time. Some applications require double
buffering. If you run a double-buffered application in single buffered mode, the
display will flash or flicker rapidly.

The following examples are for the Series 300.

Example 1: Image Mode

/dev/crt doublebuffer

Example 2: Stacked Mode

/dev/ocrt
/dev/crt doublebuffer

Example 3: Combined Mode

/dev/ocrt /dev/crt doublebuffer

Screen Depth

You can specify a screen depth for image planes in the X*screens file.
Valid depths for regular (single buffer) mode are 8 and 24. Valid depths for
doublebuffer mode are 8, 16, and 24. The depth of overlay planes is determined
by the /dev entry in X*screens. The depth for the HP 98550A is 2 overlay
planes: the depth for the HP 98720A has 3 overlay planes; and the depth for
the HP 98730 can be either 3 or 4 overlay planes.

More planes means more colors can be displayed simultaneously. For
computer-generated graphics to look as realistic as photographs, thousands of
colors must be shown at the same time. 8 planes means that 28 (256) colors
can be shown, while 24 planes means that 224 (16 million) colors can be shown.

9-6 Using Starbase on X11

Note that depth is specified only when you have more than one depth available.
This feature is available only on the HP 98720A and HP 98730A Display
Controller.

The following examples are for the Series 300.

Example 1: Image Mode

The following example shows an X*screens file entry for an HP 98720A
monitor running in image mode. Windows can have 8 planes (256 colors)
displayed simultaneously.

/dev/crt depth 8

Example 2: Combined Mode

The following example provides two doublebuffered depths in the image planes:
depth 8 (16 planes/2) and depth 12 (24 planes/2). That is, some windows in
the image planes could have a depth of 8 planes, while others could have a
depth of 12 planes. This is possible only in combined mode.

/dev/ocrt /dev/crt depth 16 depth 24 doublebuffer

Starting the X11 Server
Once you have ensured that the options you need are in the X*screens file,
type

x11start -- :n [Return)

where n is replaced by the number of the X*screens file you want to have in
effect. For example, if you have all your display options in the XOscreens file,
type x11start -- :0 to start the server.

Using Starbase on X11 9-7

Window-Smart and Window-Naive Programs
Window-smart applications are able to create and destroy the windows in
which they operate.

Window-naive (sometimes called window-dumb) applications aren't able to
create and destroy windows on their own. They need help from the XII
system.

Although this chapter discusses window-smart and window-naive applications
in relation to Starbase, the same procedures are used to start non-Starbase
programs.

Is My Application Window-Smart or Window-Naive?

If you are using an existing application, the documentation that comes with the
application will tell you how to start it. You don't have to worry whether it is
window-smart or window-naive, just follow the directions.

If you are writing a new application using Starbase, use the xwcreate and
xwdestroy commands. Rather than typing the commands each time you want
to test the new program, put the commands in a file, then execute the file to
start the application. In this case, the application is window-naive but the file
is window-smart.

Running Window-Smart Programs

From an hpterm window, type the name of the Starbase program you want to
run.

For example, the following command will start a hypothetical Starbase
application named planetarium that displays a moving display of the night
sky. Assume that the program is in the /users/funstuff/ directory on your
computer.

/users/funstuff/planetarium [Return)

9-8 Using Starbase on X11

Running Window-Naive Programs

Window-naive programs cannot open and close the window they need to run
in, so you must do it for them with clients (a terminal emulator, for example).
Programs that use the Starbase graphics library are window-naive.

Most window-naive programs are able to run in the X Window System
environment using the sox11 device driver. The sox11 driver is described in
the Starbase Device Drivers manual. But window-naive clients still need help
to create and destroy the windows they display their output in.

To enable such window-naive graphics programs to run within X, you need
four special helper clients to create and destroy the windows used by the naive
graphics programs. The clients are:

• g'W'ind

• x'W'create

• x'W'destroy

• g'W'indstop

g'W'ind runs in the background and services requests from the other three
helper clients. When requested by x'W'create, g'W'ind creates a window in which
an application can display its output; when requested by x'W'destroy, g'W'ind
destroys the window. You don't need to start the g'W'ind program, x'W'create and
x'W'destroy start and stop it for you.

The next sections cover:

• Creating a window

• Destroying a window

An example showing all of these steps follows the discussion.

Creating a Window with 'xwcreate'

x'W'create requests g'W'ind to create a window for a window-naive graphics
program to use for its output. The graphics program must exist on the same
computer that is running x'W'create. If g'W'ind is not already running when
x'W'create is executed, x'W'create will start g'W'ind. Once x'W'create has created
a window, you can use the window to run your graphics program. When you

Using Starbase on X11 9-9

finish that application, you can use the same window to run another graphics
program if you wish.

When to Use 'xwcreate'

Use xwcreate from the command line.

Syntax and Options

xwcreate

-display

-parent

-geometry

-r

-bg

-bw

-bd

-depth

-wmdir

-title

-display host:display.screen
-parent parent
-geometry width X height± col± row
-r
-bg color
-bw pixels
-bd color
-depth depth

-wmdr directory
-title name

Specifies the screen the window will appear on

N ames a window to be the parent of the window being created.

Specifies desired size and location of window.

Specifies backing store. Default is no backing store.

Specifies the background color. The default is black.

Specifies the border width in pixels. The default is 3 pixels
wide.

Specifies the border color. The default is white.

Specifies the depth of the window. The default is the same
depth as its parent.

Specifies the name of the directory containing the pty file for
the window.

Specifies the name the window will be called.

9-10 Using Starbase on X11

The depth option is where you tell the window manager what set of planes you
want the window to be in. If you specify nothing, the window is created with
the same depth as its parent, or with the same depth as the root if no parent is
specified. If you specify a depth, the window will be placed in the image plane
with the depth (number of color planes) you specify.

The following example creates a window named "foo:"

xwcreate -title foo (Return)

Destroying a Window with 'xwdestroy'

xwdestroy destroys the window created by xwcreate. If that window is the
only graphics window present at that time, gwind will also terminate.

When to Use 'xwdestroy'

Use xwdestroy from the command line.

Syntax and Options

xwdestroy [-wmdir path/directory] windowl window2 ...

-wmdir

window

Specifies the directory containing the pty file for the window.

Specifies the window or windows to be destroyed.

The following example will destroy a window named "foo:"

xwdestroy foo

Destroying a Window with 'gwindstop'

gwindstop destroys all windows created by gwind in the specified directory. If,
however, you use xwdestroy to remove the last window opened for graphics
use, xwdestroy will terminate gwind. You do not need to use gwindstop.

Using Starbase on X11 9-11

Caution

I
You must use xwdestroy or gwindstop to get rid of a window
after you have finished running your graphics application. Do
not use kill to remove the gwind process associated with
the window. If you should accidentally do so, you must type
the command rm $WMDIR/wm. Failure to do this will result in
xwcreate not running the next time you call it.

When to Use 'gwindstop'

Use gwindstop from the command line.

Syntax and Options

gwindstop [directory] [directory] ...

directory The directory containing the pty files for the windows to be
destroyed.

Running Starbase in Raw Mode
If your monitor doesn't support overlay planes, you can run Starbase in "raw"
mode, which means that Starbase writes to the entire screen rather than to a
window. You then use a transparent window to see through to the Starbase
output.

For information about Starbase raw mode, refer to the Starbase
documentation.

9·12 Using Starbase on X11

Using Transparent Windows
Transparent windows allow you to look through an overlay window into the
image planes.

Creating a Transparent Window with 'xseethru'

xseethru is a transparent overlay-plane window used to see through the
overlay planes to the image planes.

When to Use 'xseethru'

Use xseethru from the command line.

Syntax and Options

[
-geometry width X height± col± row]

xseethru
-display host:display.screen

-geometry The geometry used to create the window. Refer to chapter 4
for more information about geometry.

-display The screen the window will appear on. Refer to chapter 4 for
more information about display.

Example

This example opens a transparent window lOO-pixels by 100-pixels in size and
located 50 pixels from the left and 25 pixels from the top of the screen.

xseethru -geometry 100x100+50+25 (Return)

Creating a Transparent Window with 'xsetroot'

xsetroot allows you to make the root window transparent when you are
running X in the overlay planes.

When to Use 'xsetroot'

Use xsetroot from the command line.

Using Starbase on X11 9-13

Syntax and Options

xsetroot [-solid color]

-solid Sets the window color to color.

Example

This example turns the root window into a transparent window.

xsetroot -solid transparent (Return)

Creating a Transparent Background Color

Any window may have transparent as its background color.

Chapter 4 explains how to set colors in a window. This example opens an
hpterm window with a transparent background color.

hpterm -bg transparent (Return)

Conversion Utilities
This section shows you how to use the utilities sb2xwd and xwd2sb.

Converting Starbase Format to 'xwd' Format using 'sb2xwd'

sb2xwd converts Starbase format window files into xwd format pixmaps. The
pixmaps can then be printed by using xpr or displayed on the screen by using
xwud, both of which are described in chapter 8.

When to Use 'sb2xwd'

Use sb2xwd from the command line.

9·14 Using Starbase on X11

Syntax and Options

sb2xwd < filename > filename

<filename

>filename

The Starbase window file to be converted.

The xwd pixmap file name.

Example

This example translates the Starbase window file named mystar into an xwd
pixmap file named myxwd, then prints it on an HP LaserJet printer.

sb2xwd < mystar > myxwd
xpr -dey ljet myxwd I lp -oraw

Converting 'xwd' Format to Starbase Format using 'xwd2sb'

xwd2sb is the opposite of sb2xwd. It converts xwd format pixmaps into
Starbase format window files.

When to Use 'xwd2sb'

Use xwd2sb from the command line.

Syntax and Options

xwd2sb < filename > filename

<filename

>filename

The xwd bitmap file to be converted.

The Starbase window file filename.

Example

This example dumps a window named sample into a xwd file called myxwd,
translates it into a Starbase window file called mystar, and prints it using the
Starbase pel trans utility.

xwd -name sample -out myxwd
xwd2sb < myxwd > mystar
peltrans mystar I lp -oraw

Using Starbase on X11 9-15

A
Using Other Window Managers

The OSF /Motif Window Manager (mwm) is the window manager that is
described in this manual. However, two other window managers have been
shipped with earlier releases of the X Window System, and are included also:

• HP Window manager (hpwm) .

• uwm window manager.

If you (or your system administrator) installed X Windows on a computer that
never had X Windows on it before, the OSF /Motif Window Manager will be
the default window manager that is loaded and used.

If you are updating from a previous release of the X Window System, you will
continue to use the window manager you had before until you deliberately
convert to mwm.

You cannot have two window managers running at the same time on the same
screen.

This appendix covers differences between the window managers and how to
change between them. For specific information about each window manager,
refer to the appropriate page in the Reference section.

Using Other Window Managers A-1

Using 'hpwm'

The HP Window manager (hpwm) provides menus, icons, and window frames,
all of which can be customized.

Window borders provide an easy way to move and resize the window without
using a menu. The borders can have a 3-D look, and can also include a
"system menu" button which allows you to display and select from the system
menu using only a mouse. The window ca.n be iconified or maximized by
selecting other buttons on the window border.

Starting 'hpwm'

The hpwm window manager is started by a command in your . xllstart file
that looks similar to the following:

hpwm &; # Starts the hpwm window manager

If this is not in your . xllstart file and you want to run hpwm, edit the file to
include this line. Comment out the line that starts mwm by typing a pound sign
(#). Your commented line will look similar to the following:

#mwm &; # Starts the mwm window manager

Differences Between 'hpwm' and 'mwm'

hpwm looks and often acts like mwm, so most of this manual is correct for it as
well. The differences are mostly in the file names and resources used.

Menus

The "system menu" in hpwm is similar to the "window menu" in mwm, but it
does not have accelerators and function keys. The system menu is displayed
only as long as you have mouse button 1 pressed.

To display and select from the system menu:

1. Move the mouse pointer over the system menu button in the upper left
corner of the window border.

2. Press and hold down mouse button 1.

A-2 Usin.g Other Window Managers

3. Slide the pointer down the menu to the selection you want and release
button 1.

There is no difference in the look or action of the root menu.

The menu pointer for hpwm is an X, not an arrow as in mwm.

Cascading menus appear only if the pointer is moved to the right, not when the
pointer is anywhere on the selection.

The menu functions that you can use to customize your own menus differ
between the window managers. Refer to the man page for the specific window
manager for a list of valid functions.

Icons

There is no icon box in hpwm.

Icon menus are slightly different in content from those listed in this manual,
and are selected differently.

To display and select from an icon menu:

1. Move the mouse pointer over the icon.

2. Press and hold down (Shift), and press (Esc) to display the menu.

3. Use the (!) and (!) arrow keys to highlight the proper selection.

4. Press ('Rei'ij'!O) to make your selection.

Resources

While many of the resource names are the same in mwm and hpwm, there are
some differences. This section describes the main differences. For specific
information, refer to the appropriate window manager man page in the
Reference Section.

If a feature does not respond when you set a resource, check that the resource
name is correct for that window manager.

The default values for resources may also be different, even though the
resources have the same name.

The following commonly used resources are different in hpwm and mwm:

Using Other Window Managers A-3

• font in hpwm is fontList in mwm.

• ..• Tile in hpwm is ... Pixmap in mwm.

• Resources with names referrring to the hpwm window menu refer to the
system menu in mwm.

• mwm uses a light and dark shade of the background color to provide a 3-D
look. hpwm uses the resource makeColors to do the same thing.

• Resource specifications in mwm can refer to a client by the client name as well
as the client class.

• When specifying resources, hpwm uses a dot (.) between the clientname and
resource, while mwm uses an asterisk (*). For exam pIe:

Hpwm* clientname . resource:
Mwm* clientname* resource:

value
value

The hpwm client receives configuration information from three files:
sys .Xdefaults, system.hpwmrc, and app-defaults/Hpwm. Use these files to
define resources as described elsewhere in the manual for the equivalent mwm
files.

Using 'uwm'
Windows managed with uwm have variable-width borders, but do not have
the functional window frame or 3-D appearance of mwm- or hpwm- managed
windows.

The uwm window manager uses a single generic menu displayed on the root
window to control the size, location, iconification, and other basic operations
of the objects on the root window. uwm allows moving and resizing windows
without using a menu.

A·4 Using Other Window Managers

Starting 'uwm'

The uwm window manager is started from a command in your .xllstart file
that looks like the following:

uwm & # Starts the uwm window manager

If this is not in your . xllstart file, edit the file to include the line. Comment
out the line that starts mwm by typing a pound sign (#) at the left. The
commented line should look similar to the following:

#mwm & # Starts the mwm window manager

Configuring 'uwm'

uwm receives configuration information from the . uwmrc file. (uwm does not use
the .Xdefaults or app.defaults files that the other window managers use.) If
no configuration file can be found, built-in default values are used. Use this file
as described for the .mwmrc file described elsewhere in this manual.

The uwm man page in the Reference Section provides a list of the variables and
functions that you can use to configure uwm, along with an example startup file.

Using Other Window Managers A-5

B
Reference Information

This section contains reference information about clients included with the X
Window System and about the X protocol and server itself. The entries are
arranged alphabetically, each starting on its own "page 1."

bdftosnf(l)
bitmap(l)
gwindstop(l)
hpterm(l)
hpwm(l)
mkfontdir(I)
mwm(l)
resize(l)
rgb(l)
sb2xwd(l)
uwm(l)
X(I)
xllstart(l)
xclock(l)
xfd(l)
xhost(l)

Table B·1. Command MAN Pages

xinit(l)
xinitcolormap(l)

xload(l)
xlsfonts(I)
xmodmap(l)
xpr(l)
xrdb(l)
xrefresh(l)
xseethru(I)
Xserver(l)
xset(l)
xsetroot(l)
xterm(l)
xwcreate(I)
xwd(l)
xwd2sb(l)
xwdestroy(l)
xwinfo(l)
xwud(l)

Table B·2. File Format MAN Pages

I bdf(4)

Reference Information B·1

BDFfOSNF(l) BDFfOSNF(l)
Series 300 and 800 Only

NAME
bdftosnf - BDF to SNF font compiler for XU

SYNOPSIS
bdftosnf [-p#] [-u#] [-m] [-1] [-M] [-L] [-w] [-W] [-t] [-i) (bdfJile]

DESCRIPTION
bdftosnfreads a Bitmap Distribution Format (BOP) font from the specified file (or from standard
input if no file is specified) and writes an XU server normal font (SNF) to standard output.

OPTIONS
-p# Force the glyph padding to a specific number. The legal values are 1, 2, 4, and 8.

-0# Force the scanline unit padding to a specific number. The legal values are 1, 2, and 4.

-m Force the bit order to most significant bit first.

·1 Force the bit order to least significant bit first.

-M Force the byte order to most significant bit first.

·L Force the byte order to least significant bit first.

-w Print warnings if the character bitmaps have bits set to one outside of their defined
widths.

-W Print warnings for characters with an enCoding of -1; the default is to silently ignore such
characters.

-t Expand glyphs in "terminal-emulator" fonts to fill the bounding box.

-i Don't compute correct ink metrics for "terminal-emulator" fonts.

SEE ALSO
X(1), Xserver(1)
"Bitmap Distribution Format 2.1"

Hewlett-Packard Company -1- Ju128, 1989

BITMAP (1) BITMAP (1)
Series 300 and 800 Only

NAME
bitmap - bitmap editor for X

SYNOPSIS
bitmap [options] filename [WIDTHxHEIGHTJ

DESCRIPTION

USAGE

The bitmap program is a rudimentary tool for creating or editing rectangular images made up of
1's and O's. BitQ1aps are used in X for defining clipping regions, cursor shapes, icon shapes, and
tile and stipple patterns.

bitmap displays a grid in which each square represents a single bit in the picture being edited.
Squares can be ~t, cleared, or inverted directly with the buttons on the pointer. A menu of higher
level operations such as draw line and fill circle is provided to the side of the grid. Actual size
versions of the bitmap as it would appear normally and inverted appear below the menu.

If the bitmap is to be used for defining a cursor, one of the squares in the images may be
designated as the hotspot. This determines where the cursor is actually pointing. For cursors with
sharp tips (such as arrows or fingers), this is usually at the end of the tip; for symmetric cursors
(such as crosses or bullseyes), this is usually at the center.

Bitmaps are stored as small C code fragments suitable for including in applications. They provide
an array of bits as well as symbolic constants giving the width, height, and hotspot (if specified)
that may be used in creating cursors, icons, and tiles.

The WIDTHxHEIGHT argument gives the size to use when creating a new bitmap (the default is
16x16). Existing bitmaps are always edited at their current size.

If the bitmap window is resized by the window manager, the size of the squares in the grid will
shrink or enlarge to fit.

OPTIONS
bitmap accepts the following options:

-help
This option will cause a brief description of the allowable options and parameters to be
printed.

-display display
This option specifies the name of the X server to used.

-geometry geometry
This option specifies the placement and size of the bitmap window on the screen. See X for
details.

-nodashed
This option indicates that the grid lines in the work area should not be drawn using dashed
lines. Although dashed lines are prettier than solid lines, on some servers they are
significantly slower.

-name variablename
This option specifies the variable name to be used when writing out the bitmap file. The
default is to use the basename of the filename command line argument.

-bwnumber
This option specifies the border width in pixels of the main window.

-fnfont
This option specifies the font to be used in the buttons.

-fgeolor
This option specifies the color to be used for the foreground.

-bgeolor
This option specifies the color to be used for the background.

Hewlett-Packard Company -1- Jul28, 1989

BITMAP (1) BITMAP (1)
Series 300 and 800 Only

.hleolor
This option specifies the color to be used for highlighting.

-bd color
This option specifies the color to be used for the window border.

-mseolor
This option specifies the color to be used for the pointer (mouse).

CHANGING GRID SQUARES
Grid squares may be set, cleared, or inverted by pointing to them and clicking one of the buttons
indicated below. Multiple squares can be changed at once by holding the button down and
dragging the cursor across them. Set squares are filled and represent l's in the bitmap; clear
squares are empty and represent O's.

Button 1
This button (usually leftmost on the pointer) is used to set one or more squares.
The corresponding bit or bits in the bitmap are turned on (set to 1) and the square
or ~uares are filled.

Button 2
This button (usually in the middle) is used to invert one or more squares. The
corresponding bit or bits in the bitmap are flipped (1's become O's and O's become
1's).

Button 3

MENU COMMANDS

This button (usually on the right) is used to clear one or more squares. The
corresponding bit or bits in the bitmap are turned off (set to 0) and the square or
squares are emptied.

To make defining shapes easier, bitmap provides 13 commands for drawing whole sections of the
grid at once, 2 commands for manipulating the hotspot, and 2 commands for updating the bitmap
file and exiting. A command button for each of these operations is located to the right of the grid.

Several of the commands operate on rectangular portions of the grid. These areas are selected
after the command button is pressed by moving the cursor to the upper left square of the desired
area, pressing a pointer button, dragging the cursor to the lower right hand comer (with the
button still pressed) , and then releasing the button. The command may be aborted by pressing
any other button while dragging or by releasing outside the grid.

To invoke a command, move the pointer over the command and click any button.

Clear All
This command is used to clear all of the bits in the bitmap as if Button 3 had been
dragged through every square in the grid. It cannot be undone.

Set All
This command is used to set all of the bits in the bitmap as if Button 1 had been
dragged through every square in the grid. It cannot be undone.

Invert All
This command is used to invert all of the bits in the bitmap as if Button 2 had been
dragged through every square in the grid.

Clear Area
This command is used to clear a region of the grid as if Button 3 had been dragged
through each of the squares in the region. When this command is invoked, the
cursor will change shape to indicate that the area to be cleared should be selected
as outlined above.

Set Area
This command is used to set a region of the grid as if Button 1 had been dragged
through each of the squares in the region. When this command is inVOked, the
cursor will change shape to indicate that the area to be set should be selected as
outlined above.

Hewlett-Packard Company -2- Ju128, 1989

BITMAP (1) BITMAP (1)
Series 300 and 800 Only

Invert Area
This command is used to inverted a region of the grid as if Button 2 had been
dragged through each of the squares in the region. When this command is
invoked, the cursor will change shape to indicate that the area to be inverted
should be selected as outlined above.

Copy Area
This command is used to copy a region of the grid from one location to another.
When this command is invoked, the cursor will change shape to indicate that the
area to be copied should be selected as outlined above. The cursor should then be
clicked on the square to which the upper left hand comer of the region should be
copied.

Move Area
This command is used to move a region of the grid from one location to another.
When this command is invoked, the cursor will change shape to indicate that the
area to be moved should be selected as outlined above. The cursor should then be
clicked on the square to which the upper left hand comer of the region should be
moved. Any squares in the region's old position that aren't also in the new
position are cleared.

Overlay Area

Line

This command is used to copy all of the set squares in a region of the grid from
one location to another. When this command is invoked, the cursor will change
shape to indicate that the area to be copied should be selected as outlined above.
The cursor should then be clicked on the square to which the upper left hand
comer of the region should be overlaid. Only the squares that are set in the region
will be touched in the new location.

This command will set the squares in a line between two points. When this
command is invoked, the cursor will change shape to indicate that the pointer
should be clicked on the two end points of the line.

Orcle
This command will set the squares on a circle specified by a center and a point on
the cutve. When this command is invoked, the cursor will change shape to indicate
that the pointer should be clicked on the center of the circle and then over a point
on the cutve. Small circles may not look very round because of the size of the grid
and the limits of having to work with discrete pixels.

Filled Orcle
This command will set all of the squares in a circle specified by a center and a
point on the cutve. When this command is invoked, the cursor will change shape
to indicate that the pointer should be clicked on the center of the circle and then
over a point on the cutve. All squares side and including the circle are set.

Flood Fill
This command will set all clear squares in an enclosed shape. When this
command is invoked, the cursor will change shape to indicate that the pointer
should be clicked on any empty square inside the shape to be filled. All empty
squares that border horizontally or vertically with the indicated square are set out
to the enclosing shape. If the shape is not closed, the entire grid will be filled.

Set HotSpot
This command designates one square in the grid as the hot spot if this bitmap to
be used for defining a cursor. When the command is invoked, the cursor will
change indicating that the pointer should be clicked on the square to contain the
hotspot.

Clear HotSpot
This command removes any designated hot spot from the bitmap.

Hewlett-Packard Company -3- Jul28, 1989

BITMAP (1) BITMAP (1)
Series 300 and 800 Only

Write Output

Quit

This command writes a small fragment of C code representing the bitmap to the
filename specified on the command line. If the file already exists, the original file
will be renamed to filename- before the new file is created. If an error occurs in
either the renaming or the writing of the bitmap file, a dialog box will appear
asking whether or not bitmap should use limp Ifilename instead.

This command causes bitmap to display a dialog box asking whether or not it
should save the bitmap (if it has changed) and then exit. Answeringyes is the same
as invoking Write Output; no causes bitmap to simply exit; and cancel will abort the
Quit command so that more changes may be made.

FILE FORMAT
The Write Output command stores bitmaps as simple C program fragments that can be compiled
into programs, referred to by X Toolkit pixmap resources, manipulated by other programs (see
xsetroot), or read in using utility routines in the various programming libraries. The width and
height of the bitmap as well as the hotspot, if specified, are written as preprocessor symbols at the
start of the file. The bitmap image is then written out as an array of characters:

#define name width 11
#define name=height 5
#define name x hot 5
#define namey=hot 2

static char name bits[] = {
0x91,0x04,Oxca,0x06,0x84,
0x04,OxSa,0x04,0x91,0x04

};

The name prefix to the preprocessor symbols and to the bits array is constructed from the
filename argument given on the command line. Any directories are stripped off the front of the
name and any suffix beginning with a period is stripped off the end. Any remaining non­
alphabetic characters are replaced with underscores. The name _x _hot and name y -"ot symbols
will only be present if a hotspot has been designated using the Set HotSpot command.

Each character in the the array contains 8 bits from one row of the image (rows are padded out at
the end to a multiple of 8 to make this is possible). Rows are written out from left to right and top
to bottom. The first character of the array holds the leftmost 8 bits of top line, and the last
characters holds the right most 8 bits (including padding) of the bottom line. Within each
character, the leftmost bit in the bitmap is the least significant bit in the character.

This process can be demonstrated visually by splitting a row into words containing 8 bits each,
reversing the bits in each word (since Arabic numbers have the significant digit on the right and
images have the least significant bit on the left), and translating each word from binary to
hexadecimal.

In the following example, the array of 1's and O's on the left represents a bitmap containing 5 rows
and 11 columns that spellsXll. To its right is the same array split into 8 bit words with each row
padded with O's so that it is a multiple of 8 in length (16):

10001001001
01010011011
00100001001
01010001001
10001001001

1000100100100000
01010011 01100000
0010000100100000
0101000100100000
1000100100100000

Reversing the bits in each word of the padded, split version of the bitmap yields the left hand
figure below. Interpreting each word as a hexadecimal number yields the array of numbers on the
right:

Hewlett-Packard Company -4- Jul28,1989

BITMAP (1)
Series 300 and 800 Only

1001000100000100
1100101000000110
10000100 00000100
1000101000000100
1001000100000100

0x910x04
Oxca Ox06
Ox84 Ox04
OxBa Ox04
0x910x04

BITMAP (1)

The character array can then be generated by reading each row from left to right, top to bottom:

static char name bitsD = {
0x91,0x04,Oxca,0x06,0x84,
0x04,OxSa,0x04,0x91,0x04

};

USING BITMAPS IN PROGRAMS
The format of bitmap files is designed to make bitmaps and cursors easy to use within X
programs. The following code could be used to create a cursor from bitmaps defined in
this. cursor and this mask.cursor.

#include "this.cursor"
#include "this _ mask.cursor"

XColor foreground, background;
j* fill in foreground and background color structures * /
Pixmap source = XCreateBitmapFromData (display, drawable,

this bits, this width, this height);
Pixmap mask = XCreateBitmapFromData (display, drawable,

this mask bits, this mask width, this mask height);
Cursor cursor;; XCreatePixmapCursor (d1splay~source, mask,

foreground, background, this _x_hot, this Y _hot);

Additional routines are available for reading in bitmap files and returning the data in the file, in
Bitmap (single-plane Pixmap for use with routines that require stipples), or full depth Pixmaps
(often used for window backgrounds and borders). Applications writers should be careful to
understand the difference between Bitmaps and Pixmaps so that their programs function correctly
on color and monochrome displays.

For backward compatibility, bitmap will also accept X10 format bitmap files. However, when the
file is written out again it will be in XU format

X DEFAULTS
bitmap uses the following resources:

Background
The window's background color. Bits which are ° in the bitmap are displayed in this color.
This option is useful only on color displays. The default value is white.

BorderColor
The border color. This option is useful only on color displays. The default value is black.

BorderWidth
The border width. The default value is 2.

BodyFont
The text font. The default value is variable.

Dashed
If "off", then bitmap will draw the grid lines with solid lines. The default is "on".

Dashed
The line type. The default value is true.

Foreground
The foreground color. Bits which are 1 in the bitmap are displayed in this color. This option

Hewlett-Packard Company -5 - lui 28, 1989

BITMAP (1) BITMAP (1)
Series 300 and 800 Only

is useful only on color displays. The default value is black.

Highlight
The highlight color. bitmap uses this color to show the hot spot and to indicate rectangular
areas that will be affected by the Move Area, Copy Area, Set Area, and Invert Area commands.
If a highlight color is not given, then bitmap will highlight by inverting. This option is useful
only on color displays.

Mouse
The pointer (mouse) cursor's color. This option is useful only on color displays. The default
value is black.

Geometry
The size and location of the bitmap window.

Dimensions
The WIDTHxHEIGHT to use when creating a new bitmap.

ENVIRONMENT
DISPLAY - the default host and display number.

SEE ALSO

BUGS

X(I), Xlib - C Language X Interface (particularly the section on Manipulating Bitmaps),
XmuReadBitmapDataFromFile

The old command line arguments aren't consistent with other X programs.

If you move the pointer too fast while holding a pointer button down, some squares may be
missed. This is caused by limitations in how frequently the X server can sample the pointer
location.

There is no way to write to a file other than the one specified on the command line.

There is no way to change the size of the bitmap once the program has started.

There is no undo command.

COPYRIGHT

ORIGIN

Copyright 1988, Massachusetts Institute of TechnolOgy.
SeeX(I) for a full statement of rights and permissions.

bitmap by Ron Newman, MIT Project Athena; documentation by Jim Fulton, MIT X Consortium.

Hewlett-Packard Company -6- lui 28, 1989

GWiNDSTOP(l) GWiNDSTOP(l)
Series 300 and 800 Only

NAME
gwindstop - terminate the window helper facility

SYNOPSIS
gwindstop [directory] [directory] ..

DESCRIPTION
gwindstop

destroys windows and their associated pty files from named directories. The windows
must have been created earlier by xwcreate(1).

directory
is the name of the directory where the pty files for the windows reside. If directory name
is not supplied, /dev/screen is taken to be the desired directory. Otherwise, if the
directory argument implies an absolute pathname, then it will be taken to be the desired
directory. Otherwise, the directory name will be taken to be relative to the value of the
environment variable $WMDIR If $WMDIR is not defined in the environment, the
directory name will be taken to be relative to /dev/screen. Note: if $WMDIR is defined in
the environment, it must represent an absolute pathname.

DIAGNOSTICS

ORIGIN

If the windows in the indicated directory are successfully destroyed, then the program remains
silent. If one or more directories could not be found, an error message ("Invalid directory") will
be printed on the standard output.

Hewlett-Packard Company

SEE ALSO
xwcreate(1), xwdestroy(1).

Hewlett-Packard Company -1- Ju128,1989

HPTERM(l) HPTERM(l)
Series 300 and 800 Only

NAME
hpterm - X window system Hewlett-Packard terminal emulator

SYNOPSIS
hpterm [-toolkitoption] [-option]

DESCRIPTION
The hptenn program is a terminal emulator for the X Window system. It provides a TermO
compatible terminal for programs that can't use the window system directly. It also emulates many
of the blockmode features of HP terminals. To use these features, set the termId resource as
explained below.

OPTIONS
The hptenn terminal emulator accepts all of the standard X Toolkit command line options along
with additional options all of which are listed below (if the option begins with a '+' instead of a '-',
the option is restored to its default value):

-bnumber
This option specifies the size of the inner border (the distance between the outer edge of
the character and the window border) in pixels. Associated resource: ".borderWidth."

-background color

-bd color

-bgcolor

This option specifies the color to use for the background of the window. Associated
resource: ".background."

This option specifies the color to use for the border of the window. Associated resource:
"·borderColor."

This option specifies the color to use for the background of the window. Associated
resource: ".background."

-borderwidth number
This option specifies the width in pixels of the border surrounding the window.
Associated resource: "~opLeveISheILborderWidth."

-bwnumber
This option specifies the width in pixels of the border surrounding the window.
Associated resource: "~opLeveIShell.borderWidth."

-cr color This option specifies the color to use for the text cursor. Associated resource:
"·cursorColor. "

-display display
This option specifies the X seIVer to contact; see X(1). Associated resource: none.

-e command [arguments ...]
This option specifies the command (and its command line arguments) to be run in the
hptenn window. The default is to start the user's shell. This must be the last option on
the command line. Associated resource: none.

-fb font This option specifies a font to be used when displaying bold (alternate) text. This font
must be the same height and width as the normal (primary) font. If only one of the
normal (primary) or bold (alternate) fonts is specified, it will be used for both fonts.
Refer to the NLS section. Associated resource: ".boldFont."

-fg color This option specifies the color to use for displaying text. Associated resource:
"·foreground."

-fn font This option specifies a font to be used when displaying normal (primary) text. If only
one of the normal (primary) or bold (alternate) fonts is specified, it will be used for both
fonts. Refer to the NLS section. Associated resource: "·font."

.fontfont
This option specifies a font to be used when displaying normal (primary) text. If only
one of the normal (primary) or bold (alternate) fonts is specified, it will be used for both

Hewlett-Packard Company -1- Ju128, 1989

HPTERM(l) HPTERM(l)
Series 300 and 800 Only

fonts. Associated resource: "*font."

-foreground color
This option specifies the color to use for displaying text. Associated resource:
"*foreground."

-geometry geometry
This option specifies the preferred size and position of the hpterm window; see X(I).
Associated resource: "*termO.geometry."

-help This option will display a help message. Associated resource: none.

-i This option indicates that hpterm should supply the window manager with a bitmapped
icon. Associated resource: "bitmapIcon."

+i This option indicates that the window manager should generate its own icon for hpterm.
Associated resource: "bitmapIcon."

-iconic This option indicates that hpterm should be placed on the display in icon form.
Associated resource: "*termO.iconic."

+ iconic This option indicates that hpterm should not be placed on the display in icon form.
Associated resource: "*termO.iconic."

-kshmode
This option indicates that hpterm should convert characters entered with the extend key
pressed into a two character sequence consisting of an ASCII escape followed by the un­
extended character. Associated resource: "*kshMode."

-I This option indicates that hpterm should send all terminal output to a log file as well as
to the screen. Associated resource: "*Iogging."

+ I This option indicates that hpterm should not do logging. Associated resource:
"*Iogging."

-lfjile This option specifies the name of the file to which the output log described above is
written. If file begins with a pip~ symbol (I), the rest of the string is assumed to be a
command to be used as the endpoint of a pipe. The default filename is
"HptermLogXXXXX" (where XXXXX is the process id of hpterm) and is created in the
directory from which hptenn was started (or the user's home directory in the case of a
login window). Associated resource: "*logFile."

-Is This option indicates that the shell that is started in the hpterm window should be a login
shell (i.e. the first character of argv[O] will be a dash, indicating to the shell that it should
read the user's .login or .profile). Associated resource: "*loginShell."

+ Is This option indicates that the shell that is started should not be a login shell (i.e. it will
be a normal "subshell"). Associated resource: "*loginShell."

-mb This option indicates that the pointer cursor should be put into blanking mode. In this
mode, the cursor will turn on when the pointer is moved, and will be blanked either after
a selectable number of seconds or after keyboard input has occurred. The delay is set
via the "pointerBlankDelay" resource. Associated resource: "*pointerBlank."

+mb This option indicates that the pointer cursor should remain on. Associated resource:
"·pointerBlank."

-me mode
This option determines how hpterm will generate the foreground color, shadow colors,
and shadow tiles of the scrollbar and softkeywidgets. Valid modes are "all", "shadow",
and "none." Associated resource: "·makeColors."

-mscolor
This option specifies the color to be used for the pointer cursor. Associated resource:
"*pointerColor."

-name name
This option specifies the application name under which resources are to be obtained,
rather than the default executable file name ("hpterm"). Associated resource: ".name."

Hewlett-Packard Company -2- Ju128,1989

HPTERM(l) HPTERM(l)
Series 300 and 800 Only

-reverse This option indicates that reverse video should be simulated by swapping the foreground
and background colors. Associated resource: ".reverseVideo."

-rv This option indicates that reverse video should be simulated by swapping the foreground
and background colors. Associated resource: "·reverseVideo."

+rv This option indicates that reverse video should not be simulated. Associated resource:
"·reverseVideo."

-sb This option indicates that a scrollbar should be displayed. Associated resource:
"·scrolmar."

+ sb This option indicates that a scrollbar should not be displayed. Associated resource:
"·scrollBar."

-sbbgcolor
This option specifies the color to use for the background of the scrollbar window.
Associated resource: ".scroIlBar.background."

-sbfgcolor
This option specifies the color to use for the foreground of the scrollbar window. This
value will be ignored if the makeColors resource is set to "all." Associated resource:
"·scrolmar.foreground."

-skbgcolor
This option specifies the color to use for the background of the softkey window.
Associated resource: "·softkey.background."

-skfgcolor
This option specifies the color to use for displaying softkey text. This value will be
ignored if the makeColors resource is set to "all." Associated resource:
"·softkey.foreground. "

-skfnJont
This option specifies a font to be used when displaying softkey text. Associated resource:
"·softkey.font."

-sl number[sun«1
This option indicates the number of off screen lines to be saved in the terminal buffer. If
no suffix is included or the suffix is "I" the total length of the terminal buffer will be
number plus the length of the terminal window. If the suffix is "s" the total length of the
terminal buffer will be (number plus one) times the length of the terminal window.
Associated resource: "·saveLines."

-ti name This option specifies a name for hpterm to use when identifying itself to application
programs. To turn on blockmode, set this resource to ''2392A''. Associated resource:
"·termld."

-titIename

-tnname

This option specifies a window title for hpterm. This string may be used by the window
manager when displaying the application. Associated resource: ".TopLeveIShell.titIe."

This option specifies a name for hpterm to set the "STERM" environment variable to.
Associated resource: ".termName."

-vb This option indicates that a visual bell is preferred over an audible one. Instead of
ringing the terminal bell whenever a Control-G is received, the window will be flashed.
Associated resource: ".visuamell."

+vb This option indicates that a visual bell should not be used. Associated resource:
"·visuaIBell. "

-xrm resourcestnng
This option specifies a resource string to be used. This is especially useful for setting
resources that do not have separate command line options. Associated resource: none.

Hewlett-Packard Company - 3- Ju128, 1989

HPTERM(l) HPTERM(l)
Series 300 and 800 Only

.c This option indicates that the window should receive console output. Associated
resource: none.

-L This option indicates that hptenn was started by init(1m). In this mode, hptenn does not
try to aUocate a new pseudoterminal as init(1m) has already done so. In addition, the
system program getty (1m) is run instead of the user's sheU. This option requires a pty
name as a separate last argument. This option should never be used by users when
starting tenninal windows. Associated resource: none.

-Seen This option specifies the last two letters of the name of a pseudoterminal to use in slave
mode, and the file descriptor of the pseudoterminaI's master. This allows hptenn to be
used as an input and output channel for an existing program and is sometimes used in
specialized applications such as pam(1). Associated resource: none.

The foUowing command line arguments are provided for compatibility with older versions. They
may not be supported in future releases as the X Toolkit provides standard options that
accomplish the same task.

=geometry
This option specifies the preferred size and position of the hptenn window; see X(1). It
is equivalent to "-geometry geometry." Associated resource: "·termO.geometry."

#geometry
This option specifies the preferred position of the icon window. It is shorthand for
specifying the ".iconGeometry" resource. Associated resource: ".iconGeometry."

-T string This option specifies the title for hpterm's window. It is equivalent to "-title string."
Associated resource: ".TopLeveISheILtitle."

-n string This option specifies the icon name for hptenn's windows. It is shorthand for specifying
the ".iconName" resource. Associated resource: ".iconName."

-r This option indicates that reverse video should be simulated by swapping the foreground
and background colors. It is equivalent to "-reversevideo" or "-rv." Associated resource:
"·reverseVideo."

+r This option indicates that reverse video should no be simulated. It is equivalent to
"+rv." Associated resource: ".reverseVideo."

-wnumber

RESOURCES

This option specifies the width in pixels of the border surrounding the window. It is
equivalent to "-bordelWidthnumber" or "-bw number." Associated resource:
"..-ropLeveIShell.borderWidth. "

The hpterm window consists of an X Toolkit shell widget which contains a termO widget. The
termO widget contains a scrollbar widget and a softkey widget. Resources specific to the shell
widget are:

hpterm Resource Set
Name Class Type Default
borderColor BorderColor Pixel black
borderWidth BorderWidth int 2
geometry Geometry string
icon Geometry IconGeometry string
name Name string hpterm
title Title string Terminal emulator

Hewlett-Packard Company -4- lui 28, 1989

HPfERM(l) HPfERM(1)
Series 300 and 800 Only

borderColor
This resource defines the border color of the hpterm window.

borderWidth
This resource specifies the width of the hpterm window border. This value may be
modified by the window manager.

geometry
This resource specifies the preferred size and position of the hpterm window.

iconGeometry
This resource specifies the preferred size and position of hpterm when iconified. It is not
necessarily obeyed by all window managers.

name This resource specifies the name of the instance of the program. It is used when
extracting resources from the resource database.

title This resource specifies the window title for hpterm. This string may be used by the
window manager when displaying this application.

Hewlett-Packard Company - 5- Jul28~ 1989

HPI'ERM(l) HPfERM(l)
Series 300 and 800 Only

termO Resource Set
Name Class 'JYpe Default
allowSendEvents AllowSendEvents Boolean FALSE
background Background Pixel white
bitmap Bitmap string none
bitmaplcon Bitmaplcon Boolean FALSE
boldFont Font string see NLS below
copyLine CopyLine string shift right
cursorColor Foreground Pixel black
cut Cut string shift left
flash Border FlashBorder Boolean FALSE
font Font string see NLS below
foreground Foreground Pixel black
halffirightlnhibit Halffirightlnhibit Boolean FALSE
iconic Iconic Boolean FALSE
internalBorder BorderWidth int 2
keyboardLanguage KeyboardLanguage string see ,NLS below
keyboardLanguageList KeyboardLanguageList string see NLS below
kshMode KshMode Boolean FALSE
logFile LogFile string HptermLogXXXXX
logging Logging Boolean FALSE
loginShell LoginShell Boolean FALSE
makeColors MakeColors string none
paste Paste string shift middle
pointerBlank PointerBlank Boolean FALSE
pointerBlankDelay PointerBlankDelay int 3
pointerColor Foreground Pixel black
pointerShape PointerShape string xterm
reverseVideo ReverseVideo Boolean FALSE
saveLines Save Lines string is
scroll Bar ScrollBar Boolean FALSE
softkeySelect SoftkeySelect string left
stickyNextCursor StickyCursor Boolean TRUE
stickyPrevCursor StickyCursor Boolean TRUE
termId TermId string X-hpterm
termName TermName string hpterm
visualBell VisualBell Boolean FALSE

termO.fontLanguage (class TermO.FontLanguage) Resource Set
Name Class Type Default
primary.high FontPosition.Size string see NLS below
primary. medium FontPosition.Size string see NLS below
primary.low FontPosition.Size string see NLS below
alternate.high FontPosition.Size string see NLS below
alternate. medium FontPosition.Size string see NLS below
alternate.low FontPosition.Size string see NLS below

Hewlett-Packard Company -6- Jul28,1989

HPfERM(l) HPfERM(l)
Series 300 and 800 Only

aUowSendEvents
This resource defines whether or not synthetic key and button events (generated using the
X protocol SendEvent request) should be interpreted or discarded.

background
This resource defines the background color of the text window.

bitmap This resource defines whether or not hptenn will override its built in bitmap icon with a
user specified bitmap icon. If the path does not begin with a "I" or ".1", it will be
processed relative to "/usr/lib/Xll/bitmaps".

bitmaplcon
This resource defines whether or not hptenn will supply the window manager with a
bitmapped icon. The supplied bitmap may be ignored by the window manager.

boldFont
This resource defines the font used for bold (alternate) text. See "NLS" below for
defaults.

copyLine
This resource defines the pointer button/modifier combination to be used to activate the
CopyLine function. See "POINTER USAGE" below.

cut This resource defines the pointer button/modifier combination to be used to activate the
Cut function. See "POINTER USAGE" below.

cursorColor
This resource defines the text cursor color. The pointer cursor color is defined by the
pointerColor resource.

ftashBorder
This resource defines whether or not hpterm window border will change color when the
pointer cursor enters or leaves the window.

font This resource defines the font used for normal (primary) text. See "NLS" below for
defaults.

fontLanguage.primary.high
This resource defines the default normal (primary) font for displays with high resolution
monitors. See "NLS" below for additional information.

fontLanguage.primary.medium
This resource defines the default normal (primary) font for displays with medium
resolution monitors. See "NLS" below for additional information.

fontLanguage.primary.low
This resource defines the def~ult normal (primary) fonl for displays with low resolution
monitors. See "NLS" below for additional information.

fontLanguage.alternate.high
This resource defines the default bold (alternate) font for displays with high resolution
monitors. See "NLS" below for additional information.

fontLanguage.alternate.medium
This resource defines the default bold (alternate) font for displays with medium
resolution monitors. See "NLS" below for additional information.

fontLanguage.alternate.low
This resource defines the default bold (alternate) font for displays with low resolution
monitors. See "NLS" below for additional information.

foreground
This resource defines the foreground (text) color of the text window.

halfBrightInhibit
This resource defines whether or not half-bright enhancements will be not be generated.
When true, full-bright characters will be used instead of half-bright characters.

Hewlett-Packard Company -7- Ju128, 1989

HPTERM(I) HPTERM(I)
Series 300 and 800 Only

iconic This resource defines whether or not hpterm will start up in iconic form.

internamorder
This resource defines the number of pixels between the characters and the window
border.

keyboardLanguage
This resource defines the default keyboard language hpterm should use. See "NLS"
below for details and defaults.

keyboardLanguageList
This resource defines the list of keyboard languages that may be selected from the
terminal configuration menu. See "NLS" below for detail and defaults.

kshMode
This resource defines whether or not hpterm will operate in ksh mode. In ksh mode
hpterm will should convert characters entered with the extend key pressed into a two
character sequence consisting of an ASCII escape followed by the un-extended character.

logFile This resource defines the name of the file to which a terminal session is logged. The
default is "HptennLogXXXXX" (whereXXXXX is the process id of hpterm).

logging This resource defines whether or not a terminal session will be logged. It is also available
at runtime via the Device Control menu.

loginShell
This resource defines whether or not the shell to be run in the window will be started as a
login shell (i.e., the first character of argv(O] will be a dash, indicating to the shell that it
should read the user's .login or .profile).

makeColors
This resource defines how the bottomShadowColor, foreground, and topShadowColor
resources of the scrollbar and softkeywidgets will be generated. If the value of this
resource is "all" then hpterm will use the value of the foreground resource of the softkey
and scrollbar widgets to generate values for the bottomShadowColor, foreground, and
topShadowColor resources such that there is a 3-D look. In this case the topShadoWfile
and bottomShadoWfile are always set to "foreground." If the makeColors resource value
is "shadow" the bottomShadowColor and topShadowColor will be generated but
foreground will not be generated. If the makeColors resource value is set to "none" then
no colors will be generated.

paste This resource defines the pointer button/modifier combination to be used to activate the
Paste function. See "POINTER USAGE" below.

pointerBiank
This resource defines whether or not hptenn will put the pointer cursor into blanking
mode. In blanking mode, the pointer cursor will turn on when the pointer is moved, and
will be blanked either after a selectable number of seconds or after keyboard input has
occurred. The delay is set via the pointerBlankDelay resource.

pointerBlankDelay
This resource defines the number of seconds to wait before blanking the pointer cursor
after the pointer has been moved. When set to "0", the pointer will be blanked only upon
keyboard input.

pointerColor
This resource defines the pointer cursor color. The text cursor color is defined by the
cursorColor resource.

pointerShape
This resource defines the pointer cursor shape. Valid cursor shapes may be found in the
file "/usr/lib/Xll/cursorfont.h." Shapes are specified as the name with the leading
"XC _" dropped. Valid cursor shapes include "leftytr", "crosshair", and "xterm."

reverse Video
This resource defines whether or not reverse video will be simulated by swapping the

Hewlett-Packard Company - 8- Ju128, 1989

HPTERM(l) HPTERM(l)
Series 300 and 800 Only

foreground and background colors.

saveLines
This resource defines the number of tines in the terminal buffer beyond the length of the
window. The resource value consists of a "number" followed by an optional "suffix." If
no sUffix is included or the suffix is "I" the total length of the terminal buffer will be
number plus the length of the terminal window. If the suffix is "s" the total length of the
terminal buffer will be (number plus one) times the length of the terminal window.
Hptenn will try to maintain the same buft'er to window ratio when the window is resized
larger.

scrollBar
This resource defines whether or not the scrollbar will be displayed.

softkeySelect
This resource defines the pointer button/modifier combination to be used for selecting
softkeys. See "POINTER USAGE" below.

stickyNextCursor
This resource defines whether or not the cursor should be homed when the Next key is
pressed. When true, the cursor will be in the same screen position after the key is pressed
that it was in before pressing the key. When false, the cursor will be moved to the upper
left hand comer of the screen after the key is pressed.

stickyPrevCursor
This resource defines whether or not the cursor should be homed when the Prev key is
pressed. When true, the cursor will be in the same screen position after the key is pressed
that it was in before pressing the key. When false, the cursor will be moved to the upper
left hand comer of the screen after the key is pressed.

termId This resource defines the name for hptenn to use when identifying itself to application
programs.

termName
This resource defines the string for set the "$TERM" environment variable.

visualBell
This resource defines whether or not a visible bell (i.e. flashing) should be used instead of
an audible bell when Control-G is received.

The following resources are specified as part of the "softkey" widget (name "softkey", class
"Softkey"). For example, the softkey font resource would be specified one of:

HPterm *softkey*font:
HPterm*Softkey*font:
* Softkey*Font:

hp8.8x16
hp8.8x16
hp8.8x16

Additional resources and information can be found in the XwPrimitive(3X) and CORE(3X) man
pages along with additional information about the various shadow options.

Hewlett-Packard Company ~9- Jul28,1989

HPTERM(l) HPTERM(l)
Series 300 and 800 Only

Softkey Resource Set
Name Class 1)pe Default
background Background Pixel white
bottomShadowColor Foreground Pixel black (see below)
bottomShadoWI'i1e BottomShadoWI'i1e string foreground (see below)
font Font string (see below)
foreground Foreground Pixel black (see below)
topShadowColor Background Pixel white (see below)
topShadowTile TopShadowTile string 50 foreground (see below)

background
This resource defines the background color of the softkey window.

bottomShadowColor
This resource defines the color that is combined with the bottom shadow tile and
foreground color to create a pixmap used to draw the bottom and right sides of the
softkey borders. This may be overridden by the termO makeColors resource described
above.

bottomShadoWfile
This resource defines the tile used in creating the pixmap used for drawing the bottom
and right shadows for the softkey borders. Valid tile names are described in
XwCreateTile(3X). This may be overridden by the termO makeColors resource described
above.

font This resource defines the font used for softkey text. The softkey font will default to the
normal (primary) font of the text window.

foreground
This resource defines the foreground (text) color of the softkey window. This may be
overridden by the termO makeColors resource described above.

topShadowColor
This resource defines the color that is combined with the top shadow tile and foreground
color to create a pixmap used to draw the top and left sides of the softkey borders. This
may be overridden by the termO makeColors resource described above.

topShadoWfile
This resource defines the tile used in creating the pixmap used for drawing the top and
left shadows for the softkey borders. Valid tile names are described in XwCreateTile(3X).
This may be overridden by the termO makeColors resource described above.

The following resources are specified as part of the "Xwscrollbar" widget (name "scrollBar", class
"ScroIlBar"). Some example scrollbar resources are:

HPterm *scroIlBar*initialDelay: 10
HPterm *ScroIlBar* RepeatRate: 10
*ScroIlBar*Granularity:- 1
hpterm *scroIlBar*width: 20

Additional resources and information can be found in the XwPrimitive(3X), XwScroIlBar(3X),
XwValuator(3X), and Core(3X) man pages along with additional information about the various
shadow options.

Hewlett-Packard Company -10 - Ju128,1989

HPTERM(l) HPTERM(l)
Series 300 and 800 Only

Scrollbar Resource Set (name "scrollBar", class "ScroIlBar")
Name Class Type Default
background Background Pixel white
bottomShadowColor Foreground Pixel black (see below)
bottomShadoWTile BottomShadoWTile string foreground (see below)
foreground Foreground Pixel black (see below)
granularity Granularity int 2
initialDelay InitialDelay int 500
repeatRate RepeatRate int 100
topShadowColor Background Pixel white (see below)
topShadowTile TopShadoWTile string 50 foreground (see below)
width Width int 10

background
This resource defines the background color of the scrollbar window.

bottomShadowColor
This resource defines the color that is combined with the bottom shadow tile and
foreground color to create a pixmap used to draw the bottom and right sides of the
scrollbar borders. This may be overridden by the termO makeColors resource described
above.

bottomShadoWfile
This resource defines the tile used in creating the pixmap used for drawing the bottom
and right shadows for the scrollbar borders. Valid tile names are described in
XwCreateTile(3X). This may be overridden by the termO makeColors resource described
above.

foreground
This resource defines the foreground color of the scrollbar window. This may be
overridden by the termO makeColors resource described above.

granularity
This resource defines the number of lines to advance the slider when the button is being
held down on an arrow. The value is defined in milliseconds.

initialDelay
This resource defines the delay to wait between the time the button is held down on an
arrow before the slider starts its repetitive movement. The value is defined in
milliseconds.

repeatRate
This resource defines the continuous repeat rate to use to move the slider while the
button is being held down on an arrow. The value is also defined in milliseconds.

topShadowColor
This resource defines the color that is combined with the top shadow tile and foreground
color to create a pixmap used to draw the top and left sides of the scrollbar borders. This
may be overridden by the termO makeColors resource described above.

topShadoWfile
This resource defines the tile used in creating the pixmap used for drawing the top and
left shadows for the scrollbar borders. Valid tile names are described in
XwCreateTile(3X). This may be overridden by the termO makeColors resource described
above.

width This resource defines the width of the scrollbar in pixels.

POINTER USAGE
Hpterm allows you to cut and paste text within its own or other windows. All cutting and pasting is

Hewlett-Packard Company -11- Ju128,1989

HPTERM(l) HPTERM(l)

NLS

Series 300 and 800 Only

done to/from the first global cut buffer.

The default button assignments may be changed via various resource strings. The default button
functions are all activated when the "shift" key is pressed. The cut and paste functions and their
default button assignments are:

CopyLine
The left hand button "cuts" the text from the pointer (at button release) through the end
of line (including the new line), saving it in the cut buffer, and immediately "pastes" the
line, inserting it as keyboard input. This provides a history mechanism.

Cut The center button is used to "cut" text into the cut buffer. Move the pointer to the
beginning of the text to cut, press the button, move the cursor to the end of the region,
and release the button. The "cut" text will not include the character currently under the
pointer.

Paste The right hand button "pastes" the text from the cut buffer, inserting it as keyboard input.

The copyLine, cut, and paste key functions can be configured to any button and modifier
combination desired via various resources. Each a~ignment consists of an optional combination
of modifiers ("none" or any combination of "shift", "meta", "lock", "control", "modI", ... ,
"modS" separated by blanks), followed by a "I" and the name of the button ("left", "middle",
"right", "button1", ... , "buttonS"). For example, ifit is desired for the cut function to be
associated with the middle button with shift and control pressed, one could use the following
resource line:

*cut: shift control I middle

For a full list of resource names, see "RESOURCES" above.

Hpterm currently supports 23 different language versions of the HP keyboard. It is possible to
switch between different languages via the "terminal configuration" menu. A list of language to
choose from along with their order is specified via the "keyboardLanguageList" resource. The
"keyboardLanguageList" resource consists of a list of keyboard languages separated by spaces,
tabs, or new lines. Valid keyboard languages may be found in the file "/usr/lib/Xll/XHPlib.h."
Keyboard languages are specified as the language with the leading "KB " dropped. The default
value for the "keyboardLanguageList" resource is "US English Belgian-Canada English Danish
Dutch Finnish French Canada _French Swiss_French German Swiss _German Italian Norwegian
Euro _Spanish Latin_Spanish Swedish UK_English Katakana Swiss _ French2 Swiss _ German2
Japanese Korean S _ Chinese T _Chinese."

The initial keyboard language is specified via the "keyboard Language" resource. If the string is
NULL, the language of the setver's keyboard will be used. If the keyboard language specified is
not included in the keyboardLanguageList resource, the first language included in the
keyboardLanguageList resource will be used. The default is to use the language of the setver's
keyboard.

Hpterm will try to select default fonts which match your monitor and your keyboard language. If
the normal (primary) and bold (alternate) fonts are specified, theywill be used. If only one is
specified (via either command line options or resources), it will be used for both the normal
(primary) and bold (alternate) fonts. If neither normal (primary) or bold (alternate) fonts are
specified, hpterm trys to find them based on the default keyboard language. The default keyboard
language is indicated on the "terminal configuration" menu. The built in defaults may be
overridden via the "termO.fontLanguage" resources. FontLanguage varies with the keyboard
language as follows.

Hewlett-Packard Company -12 - Ju128, 1989

HPTERM(1) HPTERM(l)
Series 300 and 800 Only

keyboard language fontLanguage
Katakana hp kana8
Japanese hp japanese
Korean hp korean
T Chinese hp chinese t
S Chinese hp chinese s
all others HP keyboards hp roman8
non HP keyboards iso 8859 1

The default font size used will depend upon the resolution of the monitor as follows:

monitor resolution font size
72 DPI or less low
greater than 72 DPI and less 100 DPI medium
100 DPI or greater high

For example, resource specifications for the US English, German, and Finnish keyboards would
~ -

HPterm*hp Joman8.primary.high:
HPterm*hp roman8.primary.medium:
HPterm*hp - roman8.primary.low:
HPterm *hp - roman8.alternate.high:
HPterm*hp - roman8.alternate.medium:
HPterm *hp =roman8.alternate.low:

*courier-medium-r-normal--14 *hproman8 *
*courier-medium-r-normal-12 *hproman8*
*courier-medium-r-normal--8*hproman8*
*courier-bold-r-normal--14 *hproman8*
*courier-bold-r-normal--12*hproman8*
*courier-bold-r-normal--8*hproman8*

For the Japanese keyboard, resource specifications would be:

HPterm *hp japanese.primary.high:
HPterm *hp japanese.primary.medium:
HPterm *hp japanese.primary.low:
HPterm *hp japanese.alternate.high:
HPterm *hp japanese.alternate.medium:
HPterm *hp japanese.alternate.low:

jpn.8x18
jpn.8x18
jpn.8x18
math.8x18
math.8x18
math.8x18

If these fonts can not be found, the font "fixed" will be used for both the normal (primary) and
bold (alternate) fonts. These resources are for font defaults only and will be ignored if either the
normal (primary) or bold (alternate) fonts are specified.

Control-N will switch to the bold (alternate) font and control-O will switch back to the normal
(primary) font. Hptelm will switch back to the normal (primary) font automatically at the
beginning of each line.

ENVIRONMENT

ORIGIN

Hpterm sets the environment variable "$TERM" properly for the size window you have created. It
sets "$LINES" and "$COLUMNS" to be the number of lines and columns of the terminal screen.
It also uses and sets the environment variable "$DISPIAY" to specify its selVer connection. The
resize(l) command may be used to reset "$LINES" and "$COLUMNS" after the window size has
been changed.

Hewlett-Packard Company

Hewlett-Packard Company -13 - Ju128,1989

HPTERM(l) HPTERM(l)
Series 300 and 800 Only

SEE ALSO
. X(1), resize(1), xset(1), xterm(1), pty(4), Core(3X), XwScrollBar(3X), XwPrimitive(3X),
XwCreateTile(3X), XwValuator(3X), XwArrow(3X)

Hewlett-Packard Company -14 - Ju128, 1989

UPWM(l) HPWM(l)
Series 300 and 800 Only

NAME
hpwm - the Hewlett Packard window manager for X

SYNOPSIS
hpwm [options]

DESCRIPTION
The Hewlett-Packard Window Manager (hpwm) is an XU client that provides window
management functionality and some session management functionality. It provides functions that
facilitate control (by the user and the programmer) of elements of window state such as
placement, size, icon/normal display, input focus ownership etc. It also provides session
management functions such as stopping a client.

When hpwm is invoked, it retrieves configuration resource values from the following files.

/usr/lib/Xll/app-defaults/Hpwm
.xdefaults
hpwm resource description file (.hpwmrc)

OPTIONS
-display display

This option specifies the display to use; see X(1).

-xmt resourcestring
This option specifies a resource string to use.

X DEFAULTS
Hpwm is configured from its resource database. This database is built from the resource
specifications in the Xdefaults and /usr/lib/Xll/app-defaults/Hpwm resource files. Entries in
these files may refer to other resource files that specify specific types of resources (e.g., bitmaps
and menus). If the same resource is specified in more than one of the resource files the resource
specification in the Xdefaults file has precedence over the specification in the /usr/lib/Xll/app­
defaults /Hpwm file. Hpwm has built-in default values for all the resources that it uses (refer to
the descriptions of specific resources).

Hpwm is the resource class name of hpwm and bpwm is the resource name used by hpwm to look
up resources. In the following discussion of resource specification "Hpwm" and ''hpwm'' can be
used interchangeably.

Hpwm uses the following types of resources:

General Appearance Resources:

These resources are used to specify appearance attributes of window manager user interface
components. They can be applied to the appearance of window manager menus, client window
frames and icons.

Specific Appearance And Behavior Resources:

These resources are used to specify hpwm appearance and behavior (e.g., window management
policies). They are not set separately for different hpwm user interface components.

Client Class Specific Resources:

These hpwm resources can be set for a particular class of client windows. They specify class­
specific icon and client window frame appearance and behavior.

Resource identifiers can be either a resource name (e.g., "foreground") or a resource class (e.g.,
"Foreground"). If the value of a resource is a filename and if the filename is prefixed by ,,-I" then
it is relative to the path contained in the $HOME environment variable (generally the user's home
directory).

General Appearance Resources
The syntax for specifying general appearance resources that apply to window manager icons, menus

Hewlett-Packard Company - 1 - Ju128,1989

HPWM(1) HPWM(l)
Series 300 and 800 Only

and client window frames is:

"Hpwm. <resource}d >"

For example, "Hpwm*foreground" is used to specify the foreground color for hpwm menus, icons,
client window frames.

The syntax for specifying general appearance resources that apply to a particular hpwm component
is:

"Hpwm·[menu I icon I client]· <resource _id >"

If menu is specified the resource is applied only to hpwm menus, if icon is specified the resource
is applied to icons, and if client is specified the resource is applied to client window frames. For
example, "Hpwm*icon*foreground" is used to specify the foreground color for hpwm icons,
"Hpwm*menu*foreground" specifies the foreground color for hpwm menus, and
"Hpwm*client*foreground" is used to specify the foreground color for hpwm client window
frames.

The following general appearance resources can be specified:

activeBackground (class Background)
Specifies the background color of the hpwm decoration when the window is active (has
the keyboard focus). This resource can have any legal color as a value. The default value
is the background general appearance resource value.

activeBackgroundTile (class ActiveBackgroundTile)
This resource specifies the background tile of the hpwm decoration when the window is
active (has the keyboard focus). This resource can be any legal HP X Widget tile value
(See XwOeateTile(3X). The default value is "background".

activeBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the hpwm decoration when the
window is active (has the keyboard focus). The default value is the bottomShadowC%r
general appearance resource value.

activeBottomShadoWfile (class BottomShadoWfile)
This resource specifies the bottom shadow tile of the hpwm decoration when the window
is active (has the keyboard focus). The default value is the bottomShadowTile general
appearance resource value.

activeForeground (class Foreground)
This resource specifies the foreground color of the hpwm decoration when the window is
active (has the keyboard focus). This resource can have any legal color as a value. The
default value is the foreground general appearance resource value.

activeTopShadowColor (class Background)
This resource specifies the top shadow color of the hpwm decoration when the window is
active (has the keyboard focus). The default value is the topShadowColor general
appearance resource value.

activeTopShadoWfile (class TopShadoWfile)
This resource specifies the top shadow tile of the hpwm decoration when the window is
active (has the keyboard focus). The default value is the topShadowTile general
appearance resource value.

background (class Background)
This resource specifies the background color. Any legal X color may be specified. The
default is "White".

backgroundTile (class BackgroundTile)
This resource specifies the background tile of the hpwm decoration when the window is
inactive (does not have the keyboard focus). This resource can be any legal HP X Widget
tile value. The default value is "25 Joreground".

bottomShadowColor (class Foreground)
This resource specifies the top shadow color. This color is used for the lower and right

Hewlett-Packard Company -2- Ju128,1989

HPWM(1) HPWM(1)
Series 300 and 800 Only

bevels of the window manager decoration. Any legal X color may be specified. The
default is "Black".

bottomShadoWfile (class BottomShadoWfile)
This resource specifies the bottom shadow tile. This tile is used for the lower and right
bevels of the window manager decoration. Any legal HP X Widget tile may be specified.
The default is "foreground".

font (class Font)
This resource specifies the font used in menus, window titles, and icon labels. Any
available X font may be specified. The character encoding of the font should match the
character encoding of the strings that are used. The default is "fixed."

foreground (class Foreground)
This resource specifies the foreground color. Any legal X color may be specified. The
default is "Black".

makeActiveColors (class MakeColors)
If the value of this resource is "all" (or "true") then hpwm will use the value of the
adiveBackground resource to make values for the activeBottomShadowColor,
adiveForeground and activeTopShadowColor resources that provide a 3-D appearance.
In this case the adiveTopShadoWfile and adiveBottomShadoWfile are always set to
"foreground". If the makeColors resource value is "shadow" the top and bottom shadow
colors will be made but the foreground color will not be made. If the make Colors
resource value is "none" (or "false") then no colors will be automatically made. The
default value for this resource is "shadow".

makeColors (class MakeColors)
If the value of this resource is "all" then hpwm will use the value of the background
resource to make values for the bottomShadowColor, foreground and topShadowColor
resources that provide a 3-D appearance. In this case the topShadoWfile and
bottomShadoWI'ile are always set to "foreground". If the makeColors resource value is
"shadow" the top and bottom shadow colors will be made but the foreground color will
not be made. If the make Colors resource value is "none" then no colors will be
automatically made. The default value for this resource is "shadow".

topShadowColor (class Background)
This resource specifies the top shadow color. This color is used for the upper and left
bevels of the window manager decoration. Any legal X color may be specified. The
default is "White".

topShadoWfile (class TopShadoWfiIe)
This resource specifies the top shadow tile. This tile is used for the upper and left bevels
of the window manager decoration. Any legal HP X Widget tile may be specified. The
default is "SO Joreground".

Specific Appearance And Behavior Resources
The syntax for specifying specific appearance and behavior resources is:

"Hpwm* < resource _id >"

For example, "Hpwm*keyboardFocusPolicy" is used to specify the window manager policy for
setting the keyboard focus to a particular client window.

The following specific appearance and behavior resources can be specified:

bitmapDirectory (class BitmapDirectory)
This resource identifies a directory that is to be searched for bitmaps that are referenced
by hpwm resources. This directory is searched if a bitmap is specified without an
absolute pathname. The default value for this resource is "jusrjincludejXlljbitmaps".

buttonBindings (class ButtonBindings)
This resource identifies the set of button bindings for window management functions.
The named set of button bindings is specified in the hpwm resource description file file.

Hewlett-Packard Company -3- Ju128,1989

HPWM(I) HPWM(l)
Series 300 and 800 Only

The default value for this resource is "DefaultButtonBindings".

colormapFocusPolicy (class ColormapFocusPolicy)
This resource indicates the colormap focus policy that is to be used. If the resource
value is "explicit" then a colormap selection action is done on a client window to set the
colormap focus to that window. If the value is "pointer" then the client window that
contains the pointer will have the colormap focus. If the value is "keyboard" then the
client window that has the keyboard input focus will have the colormap focus. The
default value for this resource is "keyboard".

conf".gFile (class Conf"IgFile)
The resource value is the pathname for an hpwm resource description file. The default is
.hpwmrc in the user's home directory, if this file exists, otherwise
/usr /lib/Xll/system.hpwmrc.

doubleClicllfime (class DoubleClicllfime)
This resource is used to set the maximum time (in ms) between the clicks (button
presses) that make up a double-click. The default value of this resource is "500" (ms).

iconAutoPlace (class IconAutoPlace)
This resource indicates whether icons are automatically placed on the screen by hpwm.
If the resource value is "frue" then hpwm does automatic icon placement. Users may
specify an initial icon position and can move icons, but hpwm will adjust the user­
specified position to fit the icon placement scheme (refer to the IconPlacement
resource). If the resource value is ''False" then hpwm does not do automatic icon
placement, and the icon placement scheme is ignored. The default value of this resource
is "frue".

iconDecoration (class IconDecoration)
This resource specifies the general icon decoration. The resource value is "label" (only
the label part is displayed) or "image" (only the image part is displayed) or ''label image"
(both the label and image parts are displayed). A value of "activelabel" can also be
specified as an enhancement to the "label" value to get a label (not truncated to the width
of the icon) when the icon is selected. The default icon decoration is that each icon has a
label part and an image part ("label image").

iconImageMaximum (class IconImageMaximum)
This resources specifies the maximum size of the icon image. The resource value is
<width>x<height> (e.g., "64x64"). The default value of this resource is "50160".

iconImageMinimum (class IconImageMinimum)
This resources specifies the minimum size of the icon image. The resource value is
<width>x<height> (e.g., "32160"). The default value of this resource is "32x32".

iconPlacement (class IconPlacement)
This resource specifies the icon placement scheme to be used. The resource value has
the following syntax:

<primary_layout> <secondary_layout>

The layout values are one of the following:

top
bottom
left
right

Lay the icons out top to bottom.
Lay the icons out bottom to top.
Lay the icons out left to right.
Lay the icons out right to left.

A horizontal (vertical) layout value should not be used for both the primary_layout and
the secondary layout (e.g., don't use "top" for the primary layout and "bottom" for the
secondary layOut). The primary Jayout indicates whether~ when an icon placement is
done, the icon is placed in a row or a column and the direction of placement. The
secondary layout indicates where to place new rows or columns. For example, "top
right" indicates that icons should be placed top to bottom on the screen and that columns
should be added from right to left on the screen. The default placement (compatible

Hewlett-Packard Company -4- Jul28,1989

HPWM(l) HPWM(l)
Series 300 and 800 Only

with the PM placement policy) is "left bottom" (icons are placed left to right on the
screen, with the first row on the bottom of the screen, and new rows added from the
bottom of the screen to the top of the screen).

iconPlacementMargin (class IconPlacementMargin)
If nonnegative, this resource specifies the distance between the edge of the screen and
the icons that are placed along the edge of the screen. Otherwise, this distance is set
equal to the space between icons as they are placed on the screen (this space is based on
maximizing the number of icons in each row and column). The default value for this
resource is -l.

interactivePlacement (class InteractivePlacement)
This resource controls the initial placement of new windows on the screen. If it is 'True",
then the pointer shape changes before a new window is placed on the screen to indicate
to the user that a position should be selected for the upper-left hand comer of the
window. If "False" then windows will be placed according to the initial window
configuration attributes. The default value of this resource is "False."

keyBindings (class KeyBindings)
This resource identifies the set of key bindings for window management functions. The
named set of key bindings is specified in hpwm resource description file file. The default
value for this resource is "DefaultKeyBindings".

keyboardFocusPoIicy (class KeyboardFocusPolicy)
If set to "pointer" the keyboard focus policy is to have the keyboard focus set to the client
window that contains the pointer (the pointer could also be in the client window
decoration that hpwm adds). If set to "explicit" the policy is to have the keyboard focus
set to a client window when the user does a select (Button1 Down) on the client window
or any part of the associated hpwm decoration. The default value for this resource is
"explicit".

IimitResize (class LimitResize)
If this resource is 'True" the user is not allowed to resize a window to greater than the
maximum size (set by the maximumCIientSize resource or using the
WM NORMAL HINTS window property). The default value for this resource is
"False". -

maximumMaximumSize (class MaximumMaximumSize)
This resource is used to limit the maximum size of a client window as set by the user or
client. The resource value is <width>x<height> (e.g., "1024x1024") where the width
and height are in pixels. The default value of this resource is twice the screen width and
height.

move Threshold (class move Threshold)
This resource is used to control the sensitivity of "dragging" operations that are used in
moving windows and icons. The value of this resource is the number of pixels that the
locator will be moved with a button down before the move operation will be initiated.
This is used to prevent window/icon movement when a click or double-click is done and
there is unintentional pointer movement with the button down. The default value of this
resource is "4" (pixels).

passSelectButton (class PassSelectButton)
This resource indicates whether or not the keyboard input focus selection button press
(if keyboardFocusPolicy is "explicit") is passed on to the client window or used to do a
window management action associated with the window decorations. If the resource
value is "False" then the button press will not be used for any operation other than
selecting the window to be the keyboard input focus; if the value is 'True" the button
press will be passed to the client window or used to do a window management operation
if appropriate. The default value for this resource is 'True".

positionIsFrame (class PositionIsFrame)
This resource indicates how client window position information (from the
WM _NORMAL_HINTS property and from configuration requests) is to be interpreted.

Hewlett-Packard Company -5- lui 28, 1989

HPVVM(l) HPWM(l)
Series 300 and 800 Only

If the resource value is 'True" then the information is interpreted as the position of the
hpwm client window frame, if the value is "False" then it is interpreted as being the
position of the window. The default value of this resource is 'True".

positionOnScreen (class PositionOnScreen)
This resource is used to indicate that windows should initially be placed (if possible) so
that they are not clipped by the edge of the screen (if the resource value is 'True"). If a
window is larger then the size of the screen then at least the upper left corner of the
window will be on-screen. If the resource value is "False" then windows will be placed in
the requested position even if totally off-screen. The default value of this resource is
'True".

quitTimeout (class QuitTimeout)
This resource specifies the amount of time (in milliseconds) that hpwm will wait for a
client to update the WM COMMAND property after hpwm has sent the
WM _SAVE_YOURSELF message. This protocol will only be used for those clients that
have a WM SAVE YOURSELF atom in the WM PROTOCOLS client window
property. The default value of this resource is "1000" (ms).

resizeBorderWidth (class ResizeBorderWidth)
This resource specifies the width (in pixels) of the border around client windows. There
will always be some visible border even if this value is set to O. The default is "10"
(pixels).

resizeCursors (class ResizeCursors)
This is used to indicate whether the resize cursors are always displayed when the pointer
is in the window size border. If 'True" the cursors are shown, otherwise the window
manager cursor is shown. The default value is 'True".

transientDecoration (class ThansientDecoration)
This controls the amount of decoration that Hpwm puts on transient windows. The
gadget specification is exactly the same as for the clientDecoration resource (see client
class specific resources section below). Transient windows are identified by the
WM_TRANSIENT_FORpropertywhich is added by the client to indicate a relatively
temporary window. By default, Hpwm will decorate transient windows with a title bar
and no other gadgets. The default value for this resource is "title."

Client Class Specific Resources
The syntax for specifying client class specific resources for specific classes of clients is:

"Hpwm. < client_class>. < resource _id >"

For example, "Hpwm*HPterm.systemMenu" is used to specify the system menu to be used with
hpterm clients.

The syntax for specifying client class specific resources for all classes of clients is:

"Hpwm. <resource)d >"

Specific client class specifications take precedence over the specifications for all client classes. For
example, "Hpwm*systemMenu" is used to specify the system menu to be used for all classes of
clients that don't have a specific system menu specified.

The syntax for specifying resource values for windows that have an unknown class (i.e. the window
does not have a WM _ClASS property associated with it) is:

"Hpwm·defaults· < resource _id >"

For example, "Hpwm*defaults*iconImage" is used to specify the icon image to be used for
windows that have an unknown class. This is also how a default icon image can be specified for
windows that do not have an icon image available from any other source.

The following client class specific resources can be specified:

Hewlett-Packard Company -6- Ju128,1989

HPWM(1) HPWM(l)
Series 300 and 800 Only

clientDecoration (class ClientDecoration)
This resource controls the amount of gadgetry in the client window frame. The resource
is specified as a list of gadgets to specify their inclusion in the frame. If a gadget is
preceded by a minus sign, then that gadget is excluded from the frame. The sign of the
first item in the list determines the initial amount of gadgetry. If the sign of the first item
is minus, then hpwm assumes all gadgets present and starts subtracting from that set. If
the sign of the first item is plus (or not specified), then hpwm starts with no gadgets and
builds up a list from the resource.

Name

all
maximize
minimize
none
resize
system
title

Description

Include all gadgets
Maximize box (includes title bar)
Minimize box (includes title bar)
No gadgets
Resize border
System menu box (includes title bar)
Title bar (only)

The default value for this resource is "all."

iconImage (class IconImage)
This resource can be used to specify an icon image for a particular class of clients (i.e.
"Hpwm * < client class> .iconImage") or an icon image to be used for all classes of clients
that don't have i specifically specified icon image (i.e. "Hpwm *iconImage"). The
resource value is a pathname for a bitmap file. If specified this resource overrides any
client specified icon image.

The default value is to display the client supplied icon image if it is defined; if a client
icon image is not available then the icon image specified by"Hpwm*defaults*iconImage"
is used if it is specified; if an icon image is not supplied by the user or the client then a
built-in window manager icon image is used.

iconImageBackground (class Background)
This resource specifies the background color of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon background color
(i.e. specified by "Hpwm*background or Hpwm*icon*background).

iconImageBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the icon image that is displayed in
the image part of an icon. The default value of this resource is the icon bottom shadow
color (i.e. specified by Hpwm*bottomShadowColor or
Hpwm*icon*bottomShadowColor).

iconImageBottomShadoWfile (class BottomShadoWfile)
This resource specifies the bottom shadow tile of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon bottom shadow tile
(i.e. specified by Hpwm *bottomShadowTile or Hpwm * icon *bottomShadowTile).

iconImageForeground (class Foreground)
This resource specifies the foreground color of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon foreground color
(Le. specified by "Hpwm*foreground or Hpwm*icon*foreground).

iconImageTopShadowColor (class Background)
This resource specifies the top shadow color of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon top shadow color
(i.e. specified by Hpwm*topShadowColor or Hpwm*icon*topShadowColor).

iconImageTopShadoWfile (class TopShadoWfile)
This resource specifies the top shadow tile of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon top shadow tile (i.e.

Hewlett-Packard Company -7- Ju128, 1989

HPWM(l) HPWM(l)
Series 300 and 800 Only

specified by Hpwm*topShadowTile or Hpwm*icon*topShadowTile).

makeIconColors (class MakeColors)
If the value of this resource is "all" then hpwm will use the value of the
iconImageBackground resource to make values for the iconImageBottomShadowColor,
iconImageForeground and iconImageTopShadowColor resources that provide a 3-D
appearance. In this case the iconImageTopShadoWfile and
iconImageBottomShadoWfile are always set to "foreground". If the makeColors resource
value is "shadow" the top and bottom shadow colors will be made but the foreground
color will not be made. If the make Colors resource value is "none" then no colors will be
automatically made. The default value for this resource is "shadow".

makeMatteColors (class MakeColors)
If the value of this resource is "all" then hpwm will use the value of the matteBackground
resource to make values for the matteBottomShadowColor, matteForeground and
matteTopShadowColor resources that provide a 3-D appearance. In this case the
matteTopShadoWfile and matteBottomShadoWfile are always set to "foreground". If the
makeColors resource value is "shadow" the top and bottom shadow colors will be made
but the foreground color will not be made. If the makeColors resource value is "none"
then no colors will be automatically made. The default value for this resource is
"shadow".

matteBackground (class Background)
This resource specifies the background color of the matte, when matteWidth is positive.
The default value of this resource is the client background color (i.e. specified by
"Hpwm*background or Hpwm*client.background).

matteBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the matte, when matteWidth is
positive. The default value of this resource is the client bottom shadow color (i.e.
specified by "Hpwm *bottomShadowColor or Hpwm *c1ient.bottomShadowColor).

matteBottomShadoWfile (class BottomShadoWfile)
This resource specifies the bottom shadow tile of the matte, whenmatteWidth is
positive. The default value of this resource is the client bottom shadow tile (i.e. specified
by "Hpwm *bottomShadowTile or Hpwm *c1ient.bottomShadowTile).

matteForeground (class Foreground)
This resource specifies the foreground color of the matte, when matteWidth is positive.
The default value of this resource is the client foreground color (i.e. specified by
"Hpwm*foreground or Hpwm*clientforeground).

matteTopShadowColor (class Background)
This resource specifies the top shadow color of the matte, when matteWidth is positive.
The default value of this resource is the client top shadow color (i.e. specified by
"Hpwm*topShadowColor or Hpwm *client.topShadowColor).

matteTopShadoWfile (class TopShadoWfile)
This resource specifies the top shadow tile of the matte, when matteWidth is positive.
The default value of this resource is the client top shadow tile (i.e. specified by
''Hpwm*topShadowTile or Hpwm*clienuopShadowTile).

matteWidth (class MatteWidth)
This resource specifies the width of the optional matte that can be specified to frame the
client area of the window. The matte sits just inside the other client window frame
decoration. This is useful to help old applications fit into a suite of new applications that
use the HP widget set. The matte is given a 3-D effect just like the HP widgets. The
default value is 0, which effectively disables the matte.

maximumClientSize (class MaximumClientSize)
This is a size specification that indicates the client size to be used when an application is
maximized. The resource value is specified as "<width>x<height>". If this resource is
not specified then the maximum size from the WM NORMAL HINTS property is used
if set. Otherwise the default value is the size where the client window with window

Hewlett-Packard Company -8- Jul28, 1989

HPWM(l) HPWM(l)
Series 300 and 800 Only

management borders fills the screen.

systemMenu (class SystemMenu)
This resource indicates the name of the menu pane that is posted when the system menu
is popped up (usually by pressing button 1 on the system box gadget on the client
window frame). Menu panes are specified in the hpwm resource description file file.
System Menus can be customized on a client class basis by specifying resources of the
form Hpwm* <client class> .systemMenu (See Hpwm Resource Description File Syntax).
The default value of this resource is "DefaultSystemMenu".

RESOURCE DESCRIPTION FILE
The hpwm resource description file is a supplementary resource file that contains resource
descriptions that are referred to by entries in the defaults files (.xdefaults, app-defaults/Hpwm).
It contains descriptions of resources that are to be used by hpwm, and that cannot be easily
encoded in the defaults files (a bitmap file is an analogous type of resource description file). A
particular hpwm resource description file can be selected using the configFile resource.

The following types of resources can be described in the hpwm resource description file:

Buttons

Keys

Menu

Window manager functions can be bound (associated) with button press events.

Window manager functions can be bound (associated) with key press events.

These menu panes can be used for the system menu and other menus posted
with key and button bindings.

Hpwm Resource Description File Syntax
The hpwm resource deScription file is a standard text file that contains items of information
separated by blanks, tabs and new lines characters. Blank lines are ignored. Items or characters
can be quoted to avoid special interpretation (e.g., the comment character can be quoted to
prevent it from being interpreted as the comment Character). A quoted item can be contained in
double quotes ("). Single characters can be quoted by preceding them by the back-slash character
(\). All text from an unquoted # to the end of the line is regarded as a comment and is not
interpreted as part of a resource description. Window manager functions can be accessed with
button and key bindings, and with window manager menus. Functions are indicated as part of the
specifications for botton and key binding sets, and menu panes. The function specification has the
following syntax:

function =
function name =
function = args =

function name [function args]
<window manager functIon>
{quoted I unquoted _item}

The following functions are supported. If a function is specified that isn't one of the supported
functions then it is interpreted by hpwm as f.nop.

f.beep This function beeps.

f.circle down This function lowers the highest mapped client window that partially or
completely obscures another client window to the bottom of the window stack
(where it obscures no other window).

f.exec or!

f.focus color

This function raises the lowest mapped client window that is partially or
completely obscured by another client window to the top of the window stack
(where it is obscured by no other window).

This function causesfunction-args to be executed (using /bin/sh).
This function sets the colormap focus to a client window. If this function is done
in a root context then the default colormap (setup by the X Window System for
the screen where hpwm is running) will be installed and there will be no specific
client window colormap focus. This function is treated as f.nop if
colonnapFocusPolicy is not "explicit".

Hewlett-Packard Company -9- Ju128,1989

HPWM(I)

f.kill

f.lower

f.maximize

f.menu

f.minimize

f.move

f.nop

f.normalize

f.post _ smenu

f.prev_key

f.quit_hpwm

f.raise

f.raise lower

f.refresh

f.refresh win

r.resize

f.restart

f.separator

r.title

HPWM(l)
Series 300 and 800 Only

This function sets the keyboard input focus to a client window or icon. This
function is treated as f,nop if keyboardFocusPolicy is not "explicit" or the function
is executed in a root context.

This function causes a client's X connection to be terminated (usually resulting
in termination of the client).

This function lowers a client window to the bottom of the window stack (where it
obscures no other windOW).

This function causes a client window to be displayed with its maximum size.

If this function appears in a menu pane entry, it associates the cascading (pull­
right) menu identified by function args with the menu pane entry. If this
function appears in a key or button binding, it posts the menu identified by
function _ args.

This function causes a client window to be minimized / iconized.

This function allows a client window to be interactively moved.

This function installs the next colormap in the list of colormaps for the window
with the colormap focus.

This function sets the keyboard input focus to the next window/icon in the set of
windows/icons managed by the window manager (the ordering of this set is
based on the stacking of windows on the screen).

This function does nothing.

This function causes a client window to be displayed with its normal size.

This function is used to post the system menu.

This function sets the keyboard input focus to the previous window/icon in the
set of windows/icons managed by the window manager (the ordering of this set
is based on the stacking of windows on the screen).

This function terminates hpwm (but NOT the X window system).

This function raises a client window to the top of the window stack (where it is
obscured by no other window).

This function raises an obscured client window to the top of the window stack
(where it is obscured by no other window) and lowers a client window that is on
top of the window stack to the bottom of the stack (where it obscures no other
window).

This function causes all windows to be redrawn.

This function causes a client window to be redrawn.

This function allows a client window to be interactively resized.

This function causes hpwm to be restarted (effectively terminated and re­
exec'ed).

This function causes a menu separator to be put in the menu pane entry (the
label is ignored).

This function inserts a title in the menu pane if it is the first entry in the menu
pane description. By default a menu pane has no title.

Each function may be constrained as to which resource types can specify the function (e.g., menu
pane), and also what context the function can be used in (e.g., the function is done to the selected
client window). Function contexts are:

root No client window or icon has been selected as an Object for the function.

window A client window has been selected as an object for the function. This includes
the windows title bar and frame. Some functions are applied only when the
window is in its normalized state (e.g., f.maximize) or its maximized state (e.g.,

Hewlett-Packard Company -10 - Ju128,1989

HPWM(l)

icon

frame

title

HPWM(l)
Series 300 and 800 Only

f.normalize) ..

An icon has been selected as an object for the function.

A client window frame has been selected as an object for the function. This
includes the window frame's title bar.

A client window title bar has been selected as an object for the function.

If a function is specified in a type of resource where it is not supported or is invoked in a context
that does not apply then the function is treated as fnop. The fonowing table indicates the
resource types and function contexts in which window manager functions apply.

Function Contexts Resources

f.beep root,icon,window button,key,menu
f.circle down root,icon,window button,key,menu
f.circl(up root,icon,window button,key,menu
f.exec root,icon,window button,key,menu
Uocus color root,icon,window button,key,menu
Uocu(key icon,window button,key,menu
f.kill icon,window menu
f.lower icon,window button,key,menu
f.maximize icon,window(normal) button,key,menu
f.menu root,icon,window button,key,menu
f.minimize window button,key,menu
f.move icon,window button,key,menu
f.next _ cmap root,icon,window button,key,menu
f.next_key root,icon,window button,key,menu
f.nop root,icon,window button,key,menu
f.normalize icon,window(maximized) button,key,menu
f.post_smenu root,icon,window button,key
f.prev_key root,icon,window button,key,menu
f.quit_ hpwm root menu
f.raise icon,window button,key,menu
f.raise lower icon,window button,key,menu
f.refresh root,icon,window button,key,menu
f.refresh win window button,key,menu
f.resize window button,key,menu
f.restart root menu
f.separator root,icon,window menu
f.title root,icon,window menu

Button Bindings
A window manager function can be done with a pointer button press or release when the pointer
is over a client window, an icon or the root window. The context for indicating where the button
action applies is also the context for invoking the window manager function when the button press
is done.

The button binding syntax is:

Buttons bindings set name
{ - -

}

button
button

button

Hewlett-Packard Company

context function
context function

context function

-11- Jul28,1989

HPWM(1) HPWM(l)
Series 300 and 800 Only

The button specification is done using the syntax supported by the X Toolkit's translation manager,
with three exceptions: only a single event may be specified, the event must be a ButtonPress or a
ButtonRelease, and all modifiers specified are interpreted as being exclusive (this means that only
the specified modifiers can be present when the button event occurs). For example, button 1
down with the [Shift] key pressed is specified by: Shift<Btn1Down> and button 1 up with the
[Extend char] key pressed is specified by Meta < Btnt Up>. Button release specifications are
interpreted by hpwm as a "click" (i.e. a button press followed by a button release with less than the
move threshold amount of motion in between).

The syntax for the context specification is:

context =
Object =

object["I "context]
root I icon I window I title I frame

The context specification indicates where the pointer must be for the button binding to be
effective. The frame context is for the client window frame and the title context is for the title area
of the client window frame. For example, a context of window indicates that the pointer must be
over a client window or window frame or window title for the button binding to be effective. For
button bindings the frame and title contexts are equivalent to the window context.

If a f.nop function is specified for a button binding the button binding will not be done.

Key Bindings
A window manager function can be done when a particular key is pressed. The context in which
the key binding applies is indicated in the key binding specification. The valid contexts are the
same as those that apply to button bindings.

The key binding syntax is:

Keys bindings set name
{ - -

key context function
key context function

key context function

The key specification is done using the syntax supported by the X Toolkit's translation manager,
with three exceptions: only a single event may be specified, the event must be a key event, and all
moqifiers specified are interpreted as being exclusive (this means that only the specified modifiers
can be present when the key event occurs). For example, a shifted [C) key press is specified by
Shift <Key>c.

If a f.nop function is specified for a key binding the key binding will not be done. If a
f.post _smenu or f.menu function is bound to a key, hpwm will automatically use the same key for
removing the menu from the screen after it has been popped up.

The context specification syntax is the same as for button bindings. For key bindings the frame
and title contexts are equivalent to the window context.

Menu Panes
The context for window manager functions that are done from the system menu is icon or window
depending on where the system menu was popped up. For other menus the context depends on
the location of the pointer (for menus posted by button bindings) or the location of the keyboard
input focus (for menus posted by key bindings).

The menu pane specification syntax is:

Hewlett-Packard Company -12 - Jul28,1989

UPWM(l)
Series 300 and 800 Only

Menu menu yane_ name
{

}

label function
label function

label function

HPWM(l)

Each line in the Menu specification identifies the label for a menu item and the function to be
done if the menu item is selected. The label may be a string or a bitmap file. The label
specification has the following syntax:

label =
bitmap_file =
text =

text I bitmap file
"@"<file name>
quoted_item I unquoted _item

The sting encoding for labels must be compatible with the menu font that is used. Labels are
greyed out for menu items that do the [.nop function or an invalid function or a function that
doesn't apply in the current context.

WINDOW MANAGER COMMANDS
The user interactively commands the window manager with the keyboard and pointer. This
interface can be configured by the user by changing entries in the resource files for hpwm (see
above).

Pointer Commands
The pointer (usually a mouse) is the device that controls a cursor that ranges over the entire
screen. Hpwm uses the pointer in the following ways:

Button 1 Click
Select an object/action. The default actions performed by doing a button 1 click on a window
manager object are:

Object

window frame
icon
window frame and window
icon
frame minimize gadget
frame maximize gadget

Button 1 Double.click

Action

top window
top icon
explicit keyboard focus selection
explicit keyboard focus selection
minimize the window
maximize the window

The default action performed by doing a button 1 double-click on an icon is to normalize the
associated window.

Button 1 Drag
Select and perform a move/resize action or pop up a menu and select a menu item. The default
actions performed by doing a button 1 drag on a window manager object are:

Object Action

window frame title move the window

Hewlett-Packard Company -13 - Ju128,1989

HPWM(l)
Series 300 and 800 Only

window resize border
icon
frame system gadget

resize the window
move the icon
popup the system menu, select an item

HPWM(l)

The buttonBindings resource can be used to associate window management functions with button
presses (although default, unmodified Button 1 function bindings supercede unmodified Button 1
buttonBindings specifications). This is useful for users who do not want screen space taken up by
window decoration. This mechanism allows them to run without decoration, but still have a way of
manipulating windows. The default button bindings are:

Button Function Context Description

Button1 f.menu root post the default root window menu
Button1 Click f.raise frame raise window to top of stack
Meta-Button1 Drag f.move window move a window
Meta-Button3 Click f.minimize window minimize a window

Keyboard Commands
Keyboard bindings for window management functions can be defined to allow window
management to be done without using a pointer. The resource keyBindings is used to associate
key presses with window management functions. The default key bindings for window
manipulation are:

Key

Shift-Escape
Meta-Tab
Return
Up-Arrow
Down-Arrow

Function

f.post smenu
f.next=key
<built-in>
<built-in>
<built-in>

Description

pop up the system menu
go to next window in stack
accept menu selection
move to previous item in menu
move to next item in menu

Key bindings that are used to pop up the system menu are automatically used by hpwm as key
bindings for removing the menu when it is popped up.

The f.next _key function is only valid when keyboardFocusPolicy is explicit. No such function is
provided when keyboardFocusPolicy is pointer.

Interactive Window Placement
The user has the option of interactively positioning and sizing new windows before they appear on
the display. When interactivePlacement resource is set to 'True", the pointer shape will change
before the new window is mapped. A window will appear in the center of the screen that provides
position and size feedback.

The user sets the initial position by moving the pointer to the desired location and clicking the
Select button. The user may set the initial size of the window by depressing the Select button to fix
the location of the upper left-hand corner of the window and then dragging the pointer to the
desired position of the lower right-hand corner of the window. The window size will be fixed once
the user releases the Select button. The moveThresbold resource will be used to distinguish
between an accidental movement of the pointer while clicking versus a deliberate size setting
action.

You can also do interactive placement strictly from the keyboard. The arrow keys move the
pointer in the expected direction. Arrow keys while the [CfRL] key is held down to moves the
pointer in large increments. The space bar stops moving the window and gets hpwm ready to
change its size. The [Return] key completes interactive placement at any time.

The feedback window provides position and size information as the pointer is moved. The size
feedback will be in multiples of width_inc and height_inc if those values are defined in the
WM _NORMAL_HINTS for the window. In addition,a wire frame of the window is drawn to give

Hewlett-Packard Company -14 - Ju128,1989

HPWM(l) HPWM(l)
Series 300 and 800 Only

the user graphic feedback of the window size.

If the window position information is specified when the client is invoked, then interactive
placement will not take place. The window will be placed at the position specified. The window
will be of the default size unless the user also specifies this along with the position. If the user
only specifies the size of the window, hpwm will use that size as the default during interactive
placement.

Hpwm will not do interactive placement on windows that have the WM _TRANSIENT_FOR
property set. These are assumed to exist for short duration interactions (dialog boxes) with which
interactive placement would interfere.

ENVIRONMENT
Hpwm uses the environment variable $HOME specifying the user's home directory.

FILES
/usr/lib/X11/system.hpwmrc
/usr/lib/X11/app-defaults/Hpwm
$HOME/.xdefaults

COPYRIGHT
Copyright 1988, Hewlett Packard Company

ORIGIN
Hewlett-Packard Company

SEE ALSO
X(1)

Hewlett-Packard Company -15 - Jul28,1989

MKFONTDIR(l) MKFONTDIR(l)
Series 300 and 800 Only

NAME
mkfontdir - create fonts.dir file from directory of font files.

SYNOPSIS
mkfontdir [directory-names]

DESCRIPTION
For each directory argument, mkfontdir reads all of the font files in the directory searching for
properties named ''FONT", or (failing that) the name of the file stripped of its suffix. These are
used as font names, which are written out to the file "fonts.dir" in the directory along with the
name of the font file. Without a "fonts.dir" file, the server will not be able to access the font files
in the directory.

The kinds of font files read by mkfontdir depends on configuration parameters, but typically
include SNF (suffix ".snf"), compressed SNF (suffix ".snf.z", or ".scf"), BDF (suffix ".bdf'), and
compressed BDF (suffix ".bdf.z"). If a font exists in multiple formats, the most efficient format
will be used.

FONT NAME ALIASES

USAGE

The file "fonts.alias" which can be put in any directory of the font-path is used to map new names
to existing fonts, and should be edited by hand. The format is straight forward enough, two
white-space separated columns, the first containing aliases and the second containing font-name
patterns.

When a font alias is used, the name it references is searched for in the normal manner, looking
through each font directory in turn. This means that the aliases need not mention fonts in the
same directory as the alias file.

To embed white-space in either name, simply enclose them in double-quote marks, to embed
double-quote marks (or any other character), preceed them with back-slash:

"magic-alias with spaces" "\ "font\name\" with quotes"
regular-alias fixed

If the string "FILE NAMES ALIASES" stands alone on a line, each file-name in the directory
(stripped of it's .snl suffix) Win be used as an alias for that font.

Xserver(l) looks for both "fonts.dir" and "fonts.alias" in each directory in the font path each time it
is set (see xset(1)).

SEE ALSO
X(1), XselVer(1), xset(1)

Hewlett-Packard Company -1 - Ju128, 1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

NAME
mwm - The OSF /MotifWmdow Manager.

SYNOPSIS
mwm [options]

DESCRIPTION
The OSF /Motif Window Manager (mwm) is an Xll client that provides window management
functionality and some session management functionality. It provides functions that facilitate
control (by the user and the programmer) of elements of window states such as placement, size,
icon/normal display, input focus ownership, etc. It also provides session management functions
such as stopping a client.

OPTIONS
-display display

This option specifies the display to use; see X(1).

-xrm resourcestring
This option specifies a resource string to use.

APPEARANCE
The following sections describe the basic default behaviors of windows, icons, the icon box, input
focus, and window stacking. The appearance and behavior of the window manager can be altered
by changing the configuration of specific resources. Resources are defined under the heading "X
DEFAULTS."

WINDOWS
Default mwm window frames have distinct components with associated functions:

Title Area In addition to displaying the client's title, the title area is used to move
the window. To move the window, place the pointer over the title area,
press button 1 and drag the window to a new location. A wire frame is
moved during the drag to indicate the new location. When the button
is released, the window is moved to the new location.

Title Bar

Minimize Button

Maximize Button

Window Menu Button

Hewlett-Packard Company

The title bar includes the title area, the minimize button, the maximize
button and the window menu button.

To tum the window back into its icon, do a button 1 click on the
minimize button (the frame box with a small square in it).

To make the window fill the screen (or enlarge to the largest size
allowed by the configuration files), do a button 1 click on the maximize
button (the frame box with a large square in it).

The window menu button is the frame box with a horizontal bar in it.
To pop up the window menu, press button 1. While pressing, drag the
pointer on the menu to your selection, then release the button when
your selection is highlighted. Alternately, you can click button 1 to pop
up the menu and keep it posted; then position the pointer and select.

- 1- Aug 22, 1989

MWM(lX) MWM(lX)

ICONS

Series 300 and 800 Only

Default Window Menu

Selection Accelerator Description

Restore Alt+F5 Inactive (not an option for windows).

MCllTe Alt+F7 Allows the window to be moved with keys
or mouse.

Shift + MCllTe Grow Apollo keyboard.

Size Alt+F8 Allows the window to be resized.

MCllTeGrow Apollo keyboard.

Minimize Alt+F9 Turns the window into an icon.

Shift + Pop Apollo keyboard.

Maximize Alt+F10 Makes the window fill the screen.

Ctr! + MCllTe Grow Apollo keyboard.

Lower Alt+F3 MCllTes window to bottom of window
stack.

Dose Alt+F4 Removes client from MWM management.

Resize Border Handles To change the size of a window, move the pointer over a resize border
handle (the cursor will change), press button 1, and drag the window to
a new size. When the button is released, the window is resized. While
dragging is being done, a rubber-band outline is displayed to indicate
the new window size.

Matte An optional matte decoration can be added between the client area and
the window frame. A matte is not actually part of the window frame.
There is no functionality associated with a matte.

Icons are small graphic representations of windows. A window can be minimized (iconified) using
the minimize button on the window frame. Icons provide a way to reduce clutter on the screen.

Pressing mouse button 1 when the pointer is over an icon will cause the icon's window menu to
pop up. Releasing the button (press + release without moving mouse = click) will cause the
menu to stay posted. The menu contains the following selections:

Hewlett-Packard Company -2- Ju128,1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

Icon Window Menu

Selection A~lerator Description

Restore AJt+F.i Opens the associated window.

Shift+ Pop Apollo keyboard.

Move Alt+F7 Allows the icon to be moved with
keys.

Shift + Move Grow Apollo keyboard.

Size Alt+F8 Inactive (not an option for icons).

Minimize Alt+F9 Inactive (not an option for icons).

Maximize Alt+FlO Opens the associated window and
makes it fill the screen.

Ctrl + Pop Apollo keyboard.

Lower Alt+F3 Moves icon to bottom of icon
stack.

Qose Alt+F4 Removes client from MWM
management.

Double-clicking button 1 on an icon normalizes the icon into its associated window. Double­
clicking button 1 on the icon box's icon opens the icon box and allow access to the contained icons.
(In general, double-clicking a mouse button offers a quick way to have a function performed.
Another example is double-clicking button 1 with the pointer on the window menu button. This
closes the window.)

ICON BOX
When icons begin to clutter the screen, they can be packed into an "icon box." (fo use an icon
box, MWM must be started with the icon box configuration already set.) The icon box is a window
manager window that holds client icons. Icons in the icon box can be manipulated with the
mouse. The following table summarizes the behavior of this interface. Button actions apply
whenever the pointer is on any part of the icon.

Button Action Description
Button 1 click Selects the icon.

Button 1 double click Normalizes (opens) the associated window.

Button 1 double click Raises an already open window

to the top of the stack.

Button 1 drag Moves the icon.

The window menu of the icon box differs from the window menu of a client window: The "Close"
selection is replaced with the "PackIcons Alt + F12" selection. When selected, PackIcons packs the
icons in the box to achieve neat rows with no empty slots.

INPUT FOCUS
Mwm supports (by default) a keyboard input focus policy of explicit selection. This means when a
window is selected to get keyboard input, it continues to get keyboard input until the window is
withdrawn from window management, another window is explicitly selected to get keyboard input,
or the window is iconified. There are numerous resources that control the input focus. The client
window with the keyboard input focus has the active wi'1dow appearance with a visually distinctive
window frame.

The following tables summarize the keyboard input focus selection behavior:

Hewlett-Packard Company -3- Ju128,1989

MWM(lX) MWM(1X)
Series 300 and 800 Only

Button Action Object Function Description

Button 1 press Window / window frame Keyboard focus selection

Button 1 press Icon Keyboard focus selection

Key Action Function Description

[Alt](Tab] Move input focus to next window in window stack.

[NextWndw] Apollo keyboard.

[Altj(Shift]fI'ab] Move input focus to previous window in window stack.

[ShiftJ[Next Wndw] Apollo keyboard.

WINDOW S'D\.CKING
The stacking order of windows may be changed as a result of setting the keyboard input focus,
iconifying a window, or by doing a window manager window stacking function.

When a window is iconified, the windows icon is placed on the bottom of the stack.

The following table summarizes the default window stacking behavior of the window manager:

Key Action Function Description

[Alt][ESC] Put bottom window on top of stack.

[OrlJ[Pop] Apollo keyboard.

[Alt][Shift][ESC] Put top window on bottom of stack.

[AltJ[Pop] Apollo keyboard.

[Pop] Apollo keyboard. Put bottom window on top
of stack.; put top window on bottom of stack.

A window can also be raised to the top when it gets the keyboard input focus (e.g., by doing a
button 1 press on the window or by using [Alt] [Tab]) if this auto-raise feature is enabled with the
focusAutoRaise resource.

X DEFAULTS
Mwm is configured from its resource database. This database is built from the following sources.
They are listed in order of precedence, low to high:

app-defaults/Mwm
RESOURCE_MANAGER root window property or $HOME/.xdefaults
XENVIRONMENf variable or $HOME/.xdefaults-host
mwm command line options

Entries in the resource database may refer to other resource files for specific types of resources.
These include files that contain bitmaps, fonts, and mwm specific resources such as menus and
behavior specifications (i.e., button and key bindings).

Mwm is the resource class name of mwm and mwm is the resource name used by mwm to look up
resources. In the following discussion of resource specification "Mwm" and "mwm" can be used
interChangeably.

Mwm uses the following types of resources:

Component Appearance Resources:

These resources specify appearance attributes of window manager user interface components.
They can be applied to the appearance of window manager menus, feedback windows (e.g., the
window reconfiguration feedback window), client window frames, and icons.

Specific Appearance and Behavior Resources:

These resources specify mwm appearance and behavior (e.g., window management policies).
They are not set separately for different mwm user interface components.

Hewlett-Packard Company -4- luI 28, 1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

Client Specific Resources:
These mwm resources can be set for a particular client window or class of client windows. They
specify client-specific icon and client window frame appearance and behavior.

Resource identifiers can be either a resource name (e.g., foreground) or a resource class (e.g.,
Foreground). If the value of a resource is a filename and if the filename is prefixed by n-/", then
it is relative to the path contained in the $HOME environment variable (generally the user's home
directory). This is the only environment variable mwm uses directly ($XENVIRONMENT is used
by the resource manager).

COMPONENT APPEARANCE RESOURCES
The syntax for specifying component appearance resources that apply to window manager icons,
menus, and client window frames is

Mwm*resource id

For example, Mwm*foreground is used to specify the foreground color for mwm menus, icons,
and client window frames.

The syntax for specifying component appearance resources that apply to a particular mwm
component is

Mwm*[menu I icon I client I feedback]*resource _id

If menu is specified, the resource is applied only to mwm menus; if icon is specified, the resource
is applied to icons; and if client is specified, the resource is applied to client window frames. For
example, Mwm*icon*foreground is used to specify the foreground color for mwm icons,
Mwm*menu*foreground specifies the foreground color for mwm menus, and
Mwm*client*foreground is used to specify the foreground color for mwm client window frames.

The appearance of the title area of a client window frame (including window management
buttons) can be separately configured. The syntax for configuring the title area of a client window
frame is:

Mwm*client*title*resource id
For example, Mwm*client*title*foreground specifies the foreground color for the title area.
Defaults for title area resources are based on the values of the corresponding client window frame
resources.

The appearance of menus can be configured based on the name of the menu. The syntax for
specifying menu appearance by name is:

Mwm*menu*menu name*resource id - -
For example, Mwm*menu*my menu*foreground specifies the foreground color for the menu
named my_menu. -

The following component appearance resources that apply to all window manager parts can be
specified:

Hewlett-Packard Company -5- Ju128, 1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

Component Appearance Resources - All Window Manager Parts
Name Class Value'JYpe Default

background Background color varies·

backgroundPixmap BackgroundPixmap string·· varies·

bottomShadowColor Foreground color varies·

bottomShadowPixmap BottomShadowPixmap string·· varies·

fontList FontList string··· "fixed"

foreground Foreground color varies·

saveUnder SaveUnder T/F F

topShadowColor Background color varies·

topShadowPixmap TopShadowPixmap string·· varies·

*The default IS chosen based on the vISual type of the screen. **PIXmap Image name. See XmlnstallImage(3X).
***Xll R3 Font description.

background (class Background)
This resource specifies the background color. Any legal X color may be specified. The
default value is chosen based on the visual type of the screen.

backgroundPixmap (class BackgroundPixmap)
This resource specifies the background Pixmap of the mwm decoration when the window
is inactive (does not have the keyboard focus). The default value is chosen based on the
visual type of the screen.

bottomShadowColor (class Foreground)
This resource specifies the bottom shadow color. This color is used for the lower and
right bevels of the window manager decoration. Any legal X color may be specified. The
default value is chosen based on the visual type of the screen.

bottomShadowPixmap (class BottomShadow Pixmap)
This resource specifies the bottom shadow Pixmap. This Pixmap is used for the lower
and right bevels of the window manager decoration. The default is chosen based on the
visual type of the screen.

fontList (class Font)
This resource specifies the font used in the window manager decoration. The character
encoding of the font should match the character encoding of the strings that are used.
The default is "fixed."

foreground (class Foreground)
This resource specifies the foreground color. The default is chosen based on the visual
type of the screen.

saveUnder (class SaveUnder)
This is used to indicate whether "save unders" are used for mwm components. For this
to have any effect, save unders must be implemented by the X server. If save unders are
implemented, the X seNer will save the contents of windows obscured by windows that
have the save under attribute set. If the saveUnder resource is True, mwm will set the
save under attribute on the window manager frame of any client that has it set. If
saveUnder is False, save unders will not be used on any window manager frames. The
default value is False.

topShadowColor (class Background)
This resource specifies the top shadow color. This color is used for the upper and left
bevels of the window manager decoration. The default is chosen based on the visual type
of the screen.

topShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow Pixmap. This Pixmap is used for the upper and
left bevels of the window manager decoration. The default is chosen based on the visual
type of the screen.

Hewlett-Packard Company -6- Ju128, 1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

The following component appearance resources that apply to frame and icons can be specified:

Frame and Icon Components
Name Class Value1}'pe Default

activeBackground Background color varies·

activeBackgroundPixmap BackgroundPixmap string" varies·

activeBottomShadowColor Foreground color varies·

activeBottomShadowPixmap BottomShadowPixmap string·· varies·

activeForeground Foreground color varies·

activeTopShadowColor Background color varies·

activeTopShadowPixmap TopShadowPixmap string·· varies·

*The default IS chosen based on the vISual type oftlle screen. **See XmlnstallImage(3X).

activeBackground (class Background)
This resource specifies the background color of the mwm decoration when the window is
active (has the keyboard focus). The default is chosen based on the visual type of the
screen.

activeBackgroundPixmap (class ActiveBackgroundPixmap)
This resource specifies the background Pixmap of the mwm decoration when the window
is active (has the keyboard focus). The default is chosen based on the visual type of the
screen.

activeBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the mwm decoration when the
window is active (has the keyboard focus). The default is chosen based on the visual type
of the screen.

activeBottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow Pixmap of the mwm decoration when the
window is active (has the keyboard focus). The default is chosen based on the visual type
of the screen.

activeForeground (class Foreground)
This resource specifies the foreground color of the mwm decoration when the window is
active (has the keyboard focus). The default is chosen based on the visual type of the
screen.

activeTopShadowColor (class Background)
This resource specifies the top shadow color of the mwm decoration when the window is
active (has the keyboard focus). The default is chosen based on the visual type of the
screen.

activeTopShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow Pixmap of the mwm decoration when the window
is active (has the keyboard focus). The default is chosen based on the visual type of the
screen.

SPECIFIC APPEARANCE AND BEHAVIOR RESOURCES
The syntax for specifying specific appearance and behavior resources is

Mwm"'esource id

For example, Mwm·keyboardFocusPolicy specifies the window manager policy for setting the
keyboard focus to a particular client window.

The following specific appearance and behavior resources can be specified:

Hewlett-Packard Company -7- Ju128,1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

SpecUlC Appearance and Behavior Resources

Name Class Value'JYpe Default

autoKeyFocus AutoKeyFocus T/F T

autoRaiseDelay AutoRaiseDelay millisec 500

bitmapDirectory BitmapDirectory directory /usr/include/Xll/bitmaps

buttonBindings ButtonBindings string NULL

clean Text OeanText T/F T

clientAutoPlace QientAutoPlace TjF T

colormapFocusPolicy ColormapFocusPolicy string keyboard

configFile ConfigFile file .mwmrc

deiconifyKeyFocus DeiconifyKeyFocus TjF T

doubleQicl{fime DoubleOicl{fime millisec. 500

enforceKeyFocus EnforceKeyFocus TjF T

fadeNormalIcon FadeNormalIcon TjF F

frameBorderWidth FrameBorderWidth pixels 5

iconAutoPlace IconAutoPlace TjF T

iconBoxGeometry IconBoxGeometry string 6x1 +0-0

iconBoxName IconBoxName string iconbox

iconBoXI'itle IconBoXI'itle string Icons

iconOick IconCIick T/F T

iconDecoration IconDecoration string varies

iconimageMaximum IconimageMaximum wxh 50x50

iconimageMinimum IconimageMinimum wxh 32X32

iconPlacement IconPlacement string left bottom

iconPlacementMargin IconPlacementMargin pixels varies

interactivePlacement InteractivePlacement T/F F

keyBindings KeyBindings string Motif

keyboardFocusPolicy KeyboardFocusPolicy string explicit

limitResize Limit Resize TjF T

lowerOniconify LowerOniconify TjF T

maximumMaximwnSize MaximumMaximwnSize wxh (pixels) 2X screen w&h

moveThreshold MoveThreshold pixels 4

passButtons PassButlons T/F F

passSelectButton PassSeleclButlon TjF T

positionisFrame PositionisFrame TjF T

positionOnScreen PosilionOnScreen T/F T

quitTimeout QuilTimeout miUisec. 1000

resizeBorderWidth ResizeBorderWidlh pixels 10

resizeCursors ResizeCursors T/F T

showFeedback ShowFeedback string all

startupKeyFocus StartupKeyFocus TjF T

transient Decoration TransientDecoration string system title

transientFunctions TransientFunctions string -minimize -maximize

useIconBox UseIconBox TjF F

wMenuButtonClick WMenuButtonOick TjF T

wMenuButtonOick2 WMenuButtonOick2 TjF T

autoKeyFocus (class AutoKeyFocus)
This resource is only available when the keyboard input focus policy is explicit. If
autoKeyFocus is given a value of True, then when a window with the keyboard input
focus is withdrawn from window management or is iconified, the focus is set to the
previous window that had the focus. If the value given is False, there is no automatic

Hewlett-Packard Company -8- Ju128,1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

setting of the keyboard input focus. The default value is True.

autoRaiseDelay (class AutoRaiseDelay)
This resource is only available when the focusAutoRaise resource is True and the
keyboard focus policy is pointer. The autoRaiseDelay resource specifies the amount of
time (in milliseconds) that mwm will wait before raising a window after it gets the
keyboard focus. The default value of this resource is 500 (ms).

bitmapDirectory (class BitmapDirectory)
This resource identifies a directory to be searched for bitmaps referenced by mwm
resources. This directory is searched if a bitmap is specified without an absolute
pathname. The default value for this resource is "/usr/include/Xll/bitmaps".

buttonBindings (class ButtonBindings)
This resource identifies the set of button bindings for window management functions.
The named set of button bindings is specified in the mwm resource description file.
These button bindings are merged with the built-in default bindings. The default value
for this resource is NULL (i.e., no button bindings are added to the built-in button
bindings).

clean Text (classCleanText)
This resource controls the display of window manager text in the client title and feedback
windows. If the default value of True is used, the text is drawn with a clear (no stipple)
background. This makes text easier to read on monochrome systems where a
backgroundPixmap is specified. Only the stippling in the area immediately around the
text is cleared. If False, the text is drawn directly on top of the existing background.

clientAutoPlace (class ClientAutoPlace)
This resource determines the position of a window when the window has not been given
a user specified position. With a value of True, windows are positioned with the top left
corners of the frames offset horizontally and vertically. A value of False causes the
currently configured position of the window to be used. In either case, MWM will
attempt to place the windows totally on-screen. The default value is True.

colonnapFocusPolicy (class ColonnapFocusPolicy)
This resource hldicates the colormap focus policy that is to be used. If the resource
value is explicit then a colormap selection action is done on a client window to set the
colormap focus to that window. If the value is pointer then the client window containing
the pointer has the colormap focus. If the value is keyboard then the client window that
has the keyboard input focus will have the colormap focus. The default value for this
resource is keyboard.

configFile (class ConfigFile)
The resource value is the pathname for an mwm resource description file. The default is
.mwmrc in the user's home directory (based on the $HOME environment variable) if
this file exists, otherwise lusr Ilib fXll/system.mwmrc.

deiconifyKeyFocus (class DeiconifyKeyFocus)
This resource only applies when the keyboard input focus policy is explicit. If a value of
True is used, a window will receive the keyboard input focus when it is normalized
(deiconified). True is the default value.

doubleClic)(fime (class DoubleClic)(fime)
This resource is used to set the maximum time (in ms) between the clicks (button
presses) that make up a double-click. The default value of this resource is 500 (ms).

enforceKeyFocus (class EnforceKeyFocus)
If this resource is given a value of True, then the keyboard input focus is always explicitly
set to selected windows even if there is an indication that they are "globally active" input
windows. (An example of a globally active window is a scroll bar that can be operated
without setting the focus to that client.) If the resource is False, the keyboard input focus
is not explicitly set to globally active windows. The default value is True.

Hewlett-Packard Company - 9- Ju128,1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

fadeNonnallcon (class FadeN onnallcon)
If this resource is given a value of True, an icon is grayed out whenever it has been
normalized (its window has been opened). The default value is False.

frameBorderWidth (class FrameBorderWidth)
This resource specifies the width (in pixels) of a client window frame border without
resize handles. The border width includes the 3-D shadows. The default value is 5
pixels.

iconAutoPlace (class IconAutoPlace)
This resource indicates whether icons are automatically placed on the screen by mwm, or
are placed by the user. Users may specify an initial icon position and may move icons
after initial placement; however, mwm will adjust the user-specified position to fit into an
invisible grid. When icons are automatically placed, mwm places them into the grid
using a scheme set with the iconPlacement resource. If the iconAutoPlace resource has a
value of True, then mwm does automatic icon placement. A value of False allows user
placement. The default value of this resource is True.

iconBoxGeometry (class IconBoxGeometry)
This resource indicates the initial position and size of the icon box. The value of the
resource is a standard window geometry string with the following syntax:

[=][widthxheight][{ +-}xoffset{ +-}yoffset]

If the offsets are not provided, the iconPlacement policy is used to determine the initial
placement. The units for width and height are columns and rows. The actual screen size
of the icon box window will depend on the iconImageMaximum (size) and
iconDecoration resources. The default value for size is (6 * iconWidth + padding) wide
by (1 * iconHeight + padding) high. The default value of the location is +0 -0.

iconBoxName (class IconBoxName)
This resource specifies the name that is used to look up icon box resources. The default
name is iconbox.

iconBoXfitle (class IconBoXfitle)
This resource specifies the name that is used in the title area of the icon box frame. The
default value is Icons.

iconClick (class IconClick)
When this resource is given the value of True, the system menu is posted and left posted
when an icon is clicked. The default value is True.

iconDecoration (class IconDecoration)
This resource specifies the general icon decoration. The resource value is label"(only
the label part is displayed) or image (only the image part is displayed) or label image
(both the label and image parts are displayed). A value of activelabel can also be
specified to get a label (not truncated to the width of the icon) when the icon is selected.
The default icon decoration for icon box icons is that each icon has a label part and an
image part (label image). The default icon decoration for stand-alone icons is that each
icon has an active label part, a label part and an image part (active label label image).

iconImageMaximum (class IconImageMaximum)
This resource specifies the maximum size of the icon image. The resource value is
widthxheight (e.g., 64x64). The maximum supported size is 128x128. The default value of
this resource is 50XSO.

iconImageMinimum (class IconImageMinimum)
This resource specifies the minimum size of the icon image. The resource value is
widthxheight (e.g., 32x50). The minimum supported size is 16x16. The default value of
this resource is 32x32.

iconPlacement (class IconPlacement)
This resource specifies the icon placement scheme to be used. The resource value has

Hewlett-Packard Company -10 - Ju128, 1989

MWM(lX)
Series 300 and 800 Only

the following syntax:

primary }ayout secondary }ayout

The layout values are one of the following:

top
bottom
left
right

Lay the icons out top to bottom.
Lay the icons out bottom to top.
Lay the icons out left to right.
Lay the icons out right to left.

MWM(1X)

A horizontal (vertical) layout value should not be used for both the primary layout and
the secondary _layout (e.g., don't use top for the primary _layout and bottom for the
secondary _layout). The primary }ayout indicates whether, when an icon placement is
done, the icon is placed in a row or a column and the direction of placement. The
secondary _layout indicates where to place new rows or columns. For example, top right
indicates that icons should be placed top to bottom on the screen and that columns
should be added from right to left on the screen. The default placement is left bottom
(icons are placed left to right on the screen, with the first row on the bottom of the
screen, and new rows added from the bottom of the screen to the top of the screen).

iconPlacementMargin (class IconPlacementMargin)
This resource sets the distance between the edge of the screen and the icons that are
placed along the edge of the screen. The value should be greater than or equal to O. A
default value (see below) is used if the value specified is invalid. The default value for
this resource is equal to the space between icons as they are placed on the screen (this
space is based on maximizing the number of icons in each row and COlumn).

interactivePlacement (class InteractivePlacement)
This resource controls the initial placement of new windows on the screen. If the value is
True, then the pointer shape changes before a new window is placed on the screen to
indicate to the user that a position should be selected for the upper-left hand comer of
the window. If the value is False, then windows are placed according to the initial
window configuration attributes. The default value of this resource is False.

keyBindings (class KeyBindings)
This resource identifies the set of key bindings for window management functions. If
specified these key bindings replace the built-in default bindings. The named set of key
bindings is specified in mwm resource description file. The default value for this resource
is the set of compatible key bindings.

keyboardFocusPolicy (class KeyboardFocusPolicy)
If set to pointer, the keyboard focus policy is to have the keyboard focus set to the client
window that contains the pointer (the pointer could also be in the client window
decoration that mwm adds). If set to explicit, the policy is to have the keyboard focus set
to a client window when the user presses button 1 with the pointer on the client window
or any part of the associated mwm decoration. The default value for this resource is
explicit.

limitResize (class LimitResize)
If this resource is True, the user is not allowed to resize a window to greater than the
maximum size. The default value for this resource is True.

lowerOnIconify (class LowerOnIconify)
If this resource is given the default value of True, a window's icon appears on the bottom
of the window stack when the window is minimized (iconified). A value of False places
the icon in the stacking order at the same place as its associated window.

maximumMaximumSize (class MaximumMaximumSize)
This resource is used to limit the maximum size of a client window as set by the user or
client. The resource value is widtl7:xheight (e.g., 1024x1024) where the width and height
are in pixelS. The default value of this resource is twice the screen width and height.

Hewlett-Packard Company - 11- Jul28,1989

MWM(lX) MWM(1X)
Series 300 and 800 Only

move Threshold (class MoveThreshold)
This resource is used to control the sensitivity of dragging operations that move windows
and icons. The value of this resource is the number of pixels that the locator will be
moved with a button down before the move operation is initiated. This is used to
prevent window/icon movement when a click or double-click is done and there is
unintentional pointer movement with the button down. The default value of this
resource is 4 (pixels).

passButtons (class PassButtons)
This resource indicates whether or not button press events are passed to clients after
they are used to do a window manager function in the client context. If the resource
value is False, then the button press will not be passed to the client. If the value is True,
the button press is passed to the client window. The window manager function is done
in either case. The default value for this resource is False.

passSeledButton (class PassSelectButton)
This resource indicates whether or not the keyboard input focus selection button press
(if keyboardFocusPolicy is explicit) is passed on to the client window or used to do a
window management action associated with the window decorations. If the resource
value is False then the button press will not be used for any operation other than
selecting the window to be the keyboard input focus; if the value is True, the button press
is passed to the client window or used to do a window management operation, if
appropriate. The keyboard input focus selection is done in either case. The default
value for this resource is True.

positionisFrame (class PositionIsFrame)
This resource indicates how client window position information (from the
WM NORMAL HINTS property and from configuration requests) is to be interpreted.
If the resource value is True then the information is interpreted as the position of the
mwm client window frame. If the value is False then it is interpreted as being the
position of the client area of the window. The default value of this resource is True.

positionOnScreen (class PositionOnScreen)
This resource is used to indicate that windows should initially be placed (if possible) so
that they are not clipped by the edge of the screen (if the resource value is True). If a
window is larger then the size of the screen then at least the upper left corner of the
window will be on-screen. If the resource value is False, then windows are placed in the
requested position even if totally off-screen. The default value of this resource is True.

quitTimeout (class QuitTimeout)
This resource specifies the amount of time (in milliseconds) that mwm will wait for a
client to update the WM _ COMMAND property after mwm has sent the
WM SAVE YOURSELF message. This protocol will only be used for those clients that
have -a WM -SAVE YOURSELF atom and no WM DELETE WINDOW atom in the
WM PROTOCOLS client window property. The default value of this resource is 1000
(ms):" (Refer to the f.kill function for additional information.)

resizeBorderWidth (class ResizeBorderWidth)
This resource specifies the width (in pixels) of a client window frame border with resize
handles. The specified border width includes the 3-D shadows. The default is 10
(pixels).

resizeCursors (class ResizeCursors)
This is used to indicate whether the resize cursors are always displayed when the pointer
is in the window size border. If True the cursors are shown, otherwise the window
manager cursor is shown. The default value is True.

showFeedback (class ShowFeedback)
This resource controls when feedback information is displayed. It controls both window
position and size feedback during move or resize operations and initial client placement.
It also controls window manager message and dialog boxes. The value for this resource
is a list of names of the feedback options to be enabled; the names must be separated by

Hewlett-Packard Company -12 - Ju128,1989

MWM(lX) MWM(1X)
Series 300 and 800 Only

a space. The names of the feedback options are shown below:

Name Description
all Show all feedback. (Default value.)

behavior Confirm behavior switch.

move Show position during move.

none Show no feedback.

placement Show position and size during initial placement.

resize Show size during resize.

restart Confirm mwm restart.

The following command line illustrates the syntax for showFeedback:

Mwm·showFeedback: placement resize behavior restart

This resource specification provides feedback for initial client placement and resize, and
enables the dialog boxes to confirm the restart and set behavior functions. It disables
feedback for the move function.

startupKeyFocus (class StartupKeyFocus)
This resource is only available when the keyboard input focus policy is explicit. When
given the default value of True, a window gets the keyboard input focus when the window
is mapped (i.e., initially managed by the window manager).

transientDecoration (class TransientDecoration)
This controls the amount of decoration that Mwm puts on transient windows. The
decoration specification is exactly the same as for the clientDecoration (client specific)
resource. Transient windows are identified by the WM TRANSIENT FOR property
which is added by the client to indicate a relatively temporary window. -The default value
for this resource is menu title (i.e., transient windows will have resize borders and a
titlebar with a window menu button).

transientFunctions (class TransientFunctions)
This resource is used to indicate which window management functions are applicable (or
not applicable) to transient windows. The function specification is exactly the same as
for the clientFunctions (client specific) resource. The default value for this resource is
-minimize -maximize.

uselconBox (class UselconBox)
If this resource is given a value of True, icons are placed in an icon box. When an icon
box is not used, the icons are placed on the root window (default value).

wMenuButtonClick (class WMenuButtonClick)
This resource indicates whether a click of the mouse when the pointer is over the
window menu button will post and leave posted the system menu. If the value given this
resource is True, then the menu will remain posted. True is the default value for this
resource.

wMenuButtonClick2 (class WMenuButtonClick2)
When this resource is given the default value of True, a double-click action on the
window menu button will do an f.kill function.

CLIENT SPECIFIC RESOURCES
The syntax for specifying client specific resources is

Mwm.client name or class·resource id - -
For example, Mwm4omtenn~indowMenu is used to specify the window menu to be used with
mterm clients.

Hewlett-Packard Company -13 - Ju128,1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

The syntax for specifying client specific resources for all classes of clients is

Mwm.resource id

Specific client specifications take precedence over the specifications for all clients. For example,
Mwm~indowMenu is used to specify the window menu to be used for all classes of clients that
don't have a window menu specified.

The syntax for specifying resource values for windows that have an unknown name and class (i.e.
the window does not have a WM _CLASS property associated with it) is

Mwm·defauIts·resource id

For example, Mwm·defaults·iconImage is used to specify the icon image to be used for windows
that have an unknown name and class.

The following client specific resources can be specified:

Client Specific Resources
Name Class Value1)pe Default

clientDecoration OientDecoration string all

c1ientFunctions OientFunctions string all

focusAutoRaise FocusAutoRaise T/F T

iconImage IconImage patbname (image)

iconImageBackground Background color icon background

iconImageBottomShadowColor Foreground color icon bottom shadow

iconImageBottomShadowPixmap BottomShadowPixmap color icon bottom shadow pixmap

iconImageForeground Foreground color icon foreground

iconImageTopShadowColor Background color icon top shadow color

iconImageTopShadowPixmap TopShadowPixmap color icon top shadow pixmap

matte Background Background color background

matteBottomShadowColor Foreground color bottom shadow color

matteBottomShadowPixmap BottomShadowPixmap color bottom shadow pixmap

matteForeground Foreground color foreground

matteTopShadowColor Background color top shadow color

matteTopShadowPixmap TopShadowPixmap color top shadow pixmap

matteWidth MatteWidth pixels 0

maximumOientSize MaximumOientSize wxh fill the screen

useOientlcon UseOientlcon T/F F

windowMenu WindowMenu string string

clientDecoration (class ClientDecoration)
This resource controls the amount of window frame decoration. The resource is
specified as a list of decorations to specify their inclusion in the frame. If a decoration is
preceded by a minus sign, then that decoration is excluded from the frame. The sign of
the first item in the list determines the initial amount of decoration. If the sign of the
first decoration is minus, then mwm assumes all decorations are present and starts
subtracting from that set. If the sign of the first decoration is plus (or not specified),
then mwm starts with no decoration and builds up a list from the resource.

Hewlett-Packard Company -14 - Jul28, 1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

Name Description

all Include all decorations (default value).

border Wmdow border.

maximize Maximize button (includes title bar).

minimize Minimize button (includes title bar).

none No decorations.

resizeh Border resize handles (includes border).

menu Wmdow menu button (includes title bar).

title Title bar (includes border).

Examples:

Mwm·XClock·clientDecoration: -resizeh -maximize

This removes the resize handles and maximize button from XClock windows.

Mwm·XClock*clientDecoration: menu minimize border

This does the same thing as above. Note that either menu or minimize implies title.

clientFunctions (class CIientFunctions)
This resource is used to indicate which MWM functions are applicable (or not
applicable) to the client window. The value for the resource is a list of functions. If the
first function in the list has a minus sign in front of it, then MWM starts with all
functions and subtracts from that set. If the first function in the list has a plus sign in
front of it, then MWM starts with no functions and builds up a list. Each function in the
list must be preceded by the appropriate plus or minus sign and be separated from the
next function by a space.

The table below lists the functions available for this resource:

Name Description

all Include all functions (default value)

none No functions

resize f.resize

move f.move

minimize f.minimize

maximize f.maximize

close f.ltill

focusAutoRaise (class FocusAutoRaise)
When the value of this resource is True, clients are made completely unobscured when
they get the keyboard input focus. If the value is False, the stacking of windows on the
display is not changed when a window gets the keyboard input focus. The default value
is True.

iconImage (class IconImage)
This resource can be used to specify an icon image for a client (e.g.,
"Mwm * myclock * iconlmage"). The resource value is a pathname for a bitmap file. The
value of the (client specific) useClientIcon resource is used to determine whether or not
user supplied icon images are used instead of client supplied icon images. The default
value is to display a built-in window manager icon image.

iconImageBackground (class Background)
This resource specifies the background color of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon background color
(i.e., specified by "Mwm*background or Mwm*icon*background).

Hewlett-Packard Company -15 - Ju128, 1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

iconIrnageBottornShadowColor (class Foreground)
This resource specifies the bottom shadow color of the icon image that is displayed in
the image part of an icon. The default value of this resource is the icon bottom shadow
color (i.e., specified by Mwm*icon*bottomShadowColor).

iconIrnageBottornShadowPixmap (class BottornShadowPixmap)
This resource specifies the bottom shadow Pixmap of the icon image that is displayed in
the image part of an icon. The default value of this resource is the icon bottom shadow
Pixmap (i.e., specified by Mwm * icon *bottomShadowPixmap).

iconIrnageForeground (class Foreground)
This resource specifies the foreground color of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon foreground color
(i.e., specified by "Mwm*foreground or Mwm*icon*foreground).

iconIrnageTopShadowColor (class Background)
This resource specifies the top shadow color of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon top shadow color
(i.e., specified by Mwm*icon*topShadowColor).

iconImageTopShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow Pixmap of the icon image that is displayed in the
image part of an icon. The default value of this resource is the icon top shadow Pixmap
(i.e., specified by Mwm*icon*topShadowPixmap).

rnatteBackground (class Background)
This resource specifies the background color of the matte, when matteWidth is positive.
The default value of this resource is the client background color (i.e., specified by
"Mwm *background or Mwm *client*background).

rnatteBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the matte, when matteWidth is
positive. The default value of this resource is the client bottom shadow color (i.e.,
specified by "Mwm*bottomShadowColor or Mwm*client*bottomShadowColor).

rnatteBottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow Pixmap of the matte, when matteWidth is
positive. The default value of this resource is the client bottom shadow Pixmap (i.e.,
specified by "Mwm*bottomShadowPixmap or Mwm *client*bottomShadowPixmap).

rnatteForeground (class Foreground)
This resource specifies the foreground color of the matte, when matteWidth is positive.
The default value of this resource is the client foreground color (i.e., specified by
"Mwm*foreground or Mwm*client*foreground).

rnatteTopShado-wColor (class Background)
This resource specifies the top shadow color of the matte, when matteWidth is positive.
The default value of this resource is the client top shadow color (i.e., specified by
''Mwm*topShadowColor or Mwm *client*topShadowColor).

rnatteTopShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow Pixmap of the matte, when matteWidth is
positive. The default value of this resource is the client top shadow Pixmap (i.e.,
specified by "Mwm*topShadowPixmap or Mwm*client*topShadowPixmap).

rnatteWidth (class MatteWidth)
This resource specifies the width of the optional matte. The default value is 0, which
effectively disables the matte.

maximumClientSize (class MaximumClientSize)
This is a size specification that indicates the client size to be used when an application is
maximized. The resource value is specified as widlhxheighl. The width and height are
interpreted in the units that the client uses (e.g., for terminal emulators this is generally
Characters). If this resource is not specified then the maximum size from the
WM _NORMAL_HINTS property is used if set. OtheIWise the default value is the size

Hewlett-Packard Company -16 - Jul28,1989

MWM(lX) MWM(1X)
Series 300 and 800 Only

where the client window with window management borders fills the screen. When the
maximum client size is not determined by the maximumClientSize resource, the
maximumMaximumSize resource value is used as a constraint on the maximum size.

useClientIcon (class UseClientlcon)
If the value given for this resource is True, then a client supplied icon image will take
precedence over a user supplied icon image. The default value is False, making the user
supplied icon image have higher precedence than the client supplied icon image.

windowMenu (class WmdowMenu)
This resource indicates the name of the menu pane that is posted when the window
menu is popped up (usually by pressing button 1 on the window menu button on the
client window frame). Menu panes are specified in the mwm resource description file
file. Window menus can be customized on a client class basis by specifying resources of
the form Mwm·client name or class~indowMenu (see the"Mwm Resource
Description File Syntax" sectionin this man page). The default value of this resource is
the name of the built-in window menu specification.

RESOURCE DESCRIPTION FILE
The mwm resource description file is a supplementary resource file that contains resource
descriptions that are referred to by entries in the defaults files (.xdefaults, app-defaults/Mwm). It
contains descriptions of resources that are to be used by mwm, and that cannot be easily encoded
in the defaults files (a bitmap file is an analogous type of resource description file). A particular
mwm resource description file can be selected using the configFile resource.

The following types of resources can be described in the mwm resource description file:

Buttons

Keys

Menus

Window manager functions can be bound (associated) with button events.

Window manager functions can be bound (associated) with key press events.

Menu panes can be used for the window menu and other menus posted with key
bindings and button bindings.

MWM RESOURCE DESCRIPTION FILE SYNTAX
The mwm resource description file is a standard text file that contains items of information
separated by blanks, tabs, and new lines characters. Blank lines are ignored. Items or characters
can be quoted to avoid special interpretation (e.g., the comment character can be quoted to
prevent it from being interpreted as the comment character). A quoted item can be contained in
double quotes ("). Single characters can be quoted by preceding them by the back-slash character
(\). All text from an unquoted # to the end of the line is regarded as a comment and is not
interpreted as part of a resource description. If!. is the first character in a line, the line is
regarded as a comment. Window manager functions can be accessed with button and key
bindings, and with window manager menus. Functions are indicated as part of the specifications
for button and key binding sets, and menu panes. The function specification has the follOwing
syntax:

function =
function .!lame =
function _ args =

function _name [function _ args]
window manager function
{quoted _item I unquoted _item}

The following functions are supported. If a function is specified that isn't one of the supported
functions then it is interpreted by mwm as f.nop.

f.beep This function causes a beep.

f.circle down [icon I window]
- This function causes the window or icon that is on the top of the window stack to

be put on the bottom of the window stack (so that it is no longer obscuring any

Hewlett-Packard Company -17 - Jul28,1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

other window or icon). This function affects only those windows and icons that
are obscuring other windows and icons, or that are obscured by other windows
and icons. Secondary windows (i.e. transient windows) are restacked with their
associated primary window. Secondary windows always stay on top of the
associated primary window and there can be no other primary windows between
the secondary windows and their primary window. If an icon function argument
is specified, then the function applies only to icons. If a window function
argument is specified then the function applies only to windows.

f.circle up [icon I window]
- This function raises the window or icon on the bottom of the window stack (so

that it is not obscured by any other windows). This function affects only those
windows and icons that are obscuring other windows and icons, or that are
obscured by other windows and icons. Secondary windows (i.e. transient
windows) are restacked with their associated primary window. If an icon function
argument is specified then the function applies only to icons. If an window
function argument is specified then the function applies only to windows.

f.exec or!
This function causes command to be executed (using the value of the $SHELL
environment variable if it is set, othetwise /bin/sh). The! notation can be used
in place of the f.exec function name.

f.focus color
- This function sets the colormap focus to a client window. If this function is done

in a root context, then the default colormap (setup by the X Window System for
the screen where mwm is running) is installed and there is no specific client
window colormap focus. This function is treated as f.nop if colormapFocusPolicy
is not explicit.

f.focus key
- This function sets the keyboard input focus to a client window or icon. This

function is treated as f.nop if keyboardFocusPolicy is not explicit or the function is
executed in a root context.

f.kill If the WM DELETE WINDOW protocol is set up, the client is sent a client
message event indicatIng that the client window should be deleted. If the
WM SAVE YOURSELF protocol is set up and the WM DELETE WINDOW
protocol is not set up, the client is sent a client message event indicatIng that the
client needs to prepare to be terminated. If the client does not have the
WM DELETE WINDOW or WM SAVE YOURSELF protocol set up, this
function causes a client's X connectIOn to 6e terminated (usually resulting in
termination of the client). Refer to the description of the quitTimeout resource
and the WM _PROTOCOLS property.

f.lower [-client]
This function lowers a client window to the bottom of the window stack (where it
obscures no other window). Secondary windows (i.e. transient windows) are
restacked with their associated primary window. The client argument indicates
the name or class of a client to lower. If the client argument is not specified then
the context that the function was invoked in indicates the window or icon to
lower.

f.maximize
This function causes a client window to be displayed with its maximum size.

f.menu This function associates a cascading (pull-right) menu with a menu pane entry or
a menu with a button or key binding. The menu name function argument
identifies the menu to be used. -

f.minimize
This function causes a client window to be minimized (iconified). When a
window is minimized with no icon box in use, and if the lowerOnIconify resource

Hewlett-Packard Company -18 - Ju128, 1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

has the value True (the default), the icon is placed on the bottom of the window
stack (such that it obscures no other window). If an icon box is used, then the
client's icon changes to its iconified form inside the icon box. Secondary windows
(i.e. transient windows) are minimized with their associated primary window.
There is only one icon for a primary window and all its secondary windows.

f.move This function allows a client window or icon to be moved interactively.

f.next cmap
- This function installs the next colormap in the list of colormaps for the window

with the colormap focus.

f.next key [icon I window I transient]
- This function sets the keyboard input focus to the next window/icon in the set of

windows/icons managed by the window manager (the ordering of this set is
based on the staCking of windows on the screen). This function is treated as f.nop
if keyboardFocusPolicy is not explicit. The keyboard input focus is only moved to
windows that do not have an associated secondary window that is application
modal. If the transient argument is specified, then transient (secondary)
windows are traversed (otherwise, if only window is specified, traversal is done
only to the last focused window in a transient group). If an icon function
argument is specified, then the function applies only to icons. If a window
function argument is specified, then the function applies only to windows.

f.nop This function does nothing.

f.normalize
This function causes a client window to be displayed with its normal size.
Secondary windows (i.e. transient windows) are placed in their normal state along
with their associated primary window.

f.pack icons
- This function is used to relayout icons (based on the layout policy being used) on

the root window or in the icon box. In general this causes icons to be ''packed''
into the icon grid.

f.pass keys
- This function is used to enable/disable (toggle) processing of key bindings for

window manager functions. When it disables key binding processing all keys are
passed on to the window with the keyboard input focus and no window manager
functions are invoked. If the f.pass keys function is invoked with a key binding to
disable key binding processing the same key binding can be used to enable key
binding processing.

f.post wmenu
- This function is used to post the window menu. If a key is used to post the

window menu and a window menu button is present, the window menu is
automatically placed with its top-left corner at the bottom-left corner of the
window menu button for the client window. If no window menu button is
present, the window menu is placed at the top-left corner of the client window.

f.prev cmap
- This function installs the previous colormap in the list of colormaps for the

window with the colormap focus.

f.prev key [icon I window I transient]
- This function sets the keyboard input focus to the previous window/icon in the

set ofwindowsjicons managed by the window manager (the ordering of this set is
based on the stacking of windows on the screen). This function is treated asf.nop
if keyboardFocusPolicy is not explicit. The keyboard input focus is only moved to
windows that do not have an associated secondary window that is application
modal. If the transient argument is specified, then transient (secondary) windows
are traversed (otherwise, if only window is specified, traversal is done only to the
last focused window in a transient group). If an icon function argument is

Hewlett-Packard Company -19 - Jul28,1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

specified then the function applies only to icons. If an window function argument
is specified then the function applies only to windows.

f.quit mwm
- This function terminates mwm (but NOT the X window system).

f.raise [.client]
This function raises a client window to the top of the window stack (where it is
obscured by no other window). Secondarywindows (i.e. transient windows) are
restacked with their associated primary window. The client argument indicates
the name or class of a client to raise. If the client argument is not specified then
the context that the function was invoked in indicates the window or icon to raise.

f.raise lower
- This function raises a client window to the top of the window stack if it is partially

obscured by another window, otherwise it lowers the window to the bottom of the
window stack. Secondarywindows (i.e. transient windows) are restacked with
their associated primary window.

f.refresh
This function causes all windows to be redrawn.

f.refresh win
This function causes a client window to be redrawn.

f.resize This function allows a client window to be interactively resized.

f.restart
This function causes mwm to be restarted (effectively terminated and re­
executed).

f.send msg message number
- This function sends a client message of the type _MOTIF _ WM _MESSAGES

with the message type indicated by the message number function argument. The
client message will only be sent if message_number is included in the client's
MOTIF WM MESSAGES property. A menu item label is grayed out if the

menu item is used to do f.send msg of a message that is not included in the
client's _MOTIF _ WM _MESSAGES property.

f.separator
This function causes a menu separator to be put in the menu pane at the
specified location (the label is ignored).

f.set behavior
- This function causes the window manager to restart with the default behavior (if a

custom behavior is configured) or a custom behavior (if a default behavior is
configured).

f.title This function inserts a title in the menu pane at the specified location.

Each function may be constrained as to which resource types can specify the function
(e.g., menu pane) and also what context the function can be used in (e.g., the function is
done to the selected client window). Function contexts are

root

window

icon

No client window or icon has been selected as an object for the function.

A client window has been selected as an object for the function. This
includes the windows title bar and frame. Some functions are applied
only when the window is in its normalized state (e.g., f.maximize) or its
maximized state (e.g., f.normalize).

An icon has been selected as an object for the function.

If a function is specified in a type of resource where it is not supported or is invoked in a
context that does not apply then the function is treated as f.nop. The following table
indicates the resource types and function contexts in which window manager functions
apply.

Hewlett-Packard Company - 20- lui 28, 1989

MWM(lX) MWM(1X)
Series 300 and 800 Only

Function Contexts Resources

fbeep root,icon,window button,key,menu

f.circle _ down root,icon,window button,key,menu

f.circle _ up root,icon,window button,key,menu

f.exec root,icon,window button,key,menu

f.focus _color root,icon,window button,key,menu

f.focus_key root,icon,window button,key,menu

f.ltill icon,window button,key,menu

f.Iower root,icon,window button,key,menu

f.maximize icon,window(normal) button,key,menu

f.menu root,icon,window button,key,menu

f.minimize window button,key,menu

f.move icon,window button,key,menu

f.next _ cmap root,icon,window button,key,menu

f.next_key root,icon,window button,key,menu

f.nop root,icon,window button,key,menu

f.normalize icon,window(maximized) button,key,menu

f.pack _icons root,icon,window button,key,menu

f.pass _keys root,icon,window button,key,menu

f.post_ wmenu root,icon,window button,key

f.prev _ cmap root,icon,window button,key,menu

f.prev_key root,icon,window button,key,menu

f.quit_mwm root button,key,menu

f.raise root,icon,window button,key,menu

f.raise lower icon,window button,key,menu

f.refresh root,icon,window button,key,menu

f.refresh_ win window button,key,menu

f.resize window button,key,menu

f.restart root button,key,menu

f.send_msg icon,window button,key,menu

f.separator root,icon,window menu

f.set_ behavior root,icon,window button,key,menu

f.title root,icon,window menu

WINDOW MANAGER EVENT SPECIFICATION
Events are indicated as part of the specifications for button and key binding sets, and menu panes.

Button events have the following syntax:

button =
modifier_list =

[modifier list] <button event name>
modifier _name {modifier ...!lame}

All modifiers specified are interpreted as being exclusive (this means that only the specified
modifiers can be present when the button event occurs). The following table indicates the values
that can be used for modifier name. The [Aft] key is frequently labeled [Extend] or [Meta]. Alt
and Meta can be used interchangeably in event specification.

Hewlett-Packard Company - 21- Ju128,1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

Modifier Description
OrI Control Key
Shift Shift Key

All Alt/Meta Key
Meta Meta/Alt Key

Lock Lock Key

ModI Modifierl

M0d2 Modifier2

M0d3 Modifier3

M0d4 Modifier4

ModS ModifierS

The following table indicates the values that can be used for button _event_name.

Button Description
BtnlDown Button I Press

BtnlUp Button I Release

BtnlDick Button 1 Press and Release

BtnlOick2 Button I Double Dick

Btn2Down Button 2 Press

Btn2Up Button 2 Release
Btn20ick Button 2 Press and Release

Btn20ick2 Button 2 Double Oick

Btn3Down Button 3 Press

Btn3Up Button 3 Release

Btn30ick Button 3 Press and Release

Btn30ick2 Button 3 Dowie Oick

Btn4Down Button 4 Press
Btn4Up Button 4 Release

Btn40ick Button 4 Press and Release

Btn40ick2 Button 4 Double Oick

BtnSDown Button 5 Press

BtnSUp Button 5 Release

BtnSOick Button 5 Press and Release
BtnSOick2 Button 5 Double Oick

Key events that are used by the window manager for menu mnemonics and for binding to window
manager functions are single key presses; key releases are ignored. Key events have the following
syntax:

key =
modifier_list =

[modifier_list] < Key > key _name
modifier yame {modifier yame}

All modifiers specified are interpreted as being exclusive (this means that only the specified
modifiers can be present when the key event occurs). Modifiers for keys are the same as those
that apply to buttons. The key name is an XU keysym name. Keysym names can be found in the
keysymdef.h file (remove the ilK_prefix).

BUTfON BINDINGS
The buttonBindings resource value is the name of a set of button bindings that are used to
configure window manager behavior. A window manager function can be done when a button
press occurs with the pointer over a framed client window, an icon or the root window. The
context for indicating where the button press applies is also the context for invoking the window
manager function when the button press is done (significant for functions that are context
sensitive).

The button binding syntax is

Hewlett-Packard Company - 22- Ju128,1989

MWM(1X)
Series 300 and 800 Only

Buttons bindings set name
{ - -

button context function
button context function

button context function

The syntax for the context specification is

context =
object =

object[I context]
root I icon I window I title I frame I border lapp

MWM(lX)

The context specification indicates where the pointer must be for the button binding to be
effective. For example, a context of window indicates that the pointer must be over a client
window or window management frame for the button binding to be effective. The frame context is
for the window management frame around a client window (including the border and titlebar), the
border context is for the border part of the window management frame (not including the
titlebar), the title context is for the title area of the window management frame, and the app
context is for the application window (not including the window management frame).

If an f.nop function is specified for a button binding, the button binding will not be done.

KEY BINDINGS
The keyBindings resource value is the name of a set of key bindings that are used to configure
window manager behavior. A window manager function can be done when a particular key is
pressed. The context in which the key binding applies is indicated in the key binding specification.
The valid contexts are the same as those that apply to button bindings.

The key binding syntax is

Keys bindings set name
{ - -

}

key context function
key context function

key context function

If an f.nop function is specified for a key binding, the key binding will not be done. If an
f.post _ wmenu or f.menu function is bound to a key, mwm will automatically use the same key for
removing the menu from the screen after it has been popped up.

The context specification syntax is the same as for button bindings. For key bindings, the frame,
title, border, and app contexts are equivalent to the window context. The context for a key event is
the window or icon that has the keyboard input focus (root if no window or icon has the keyboard
input focus).

MENU PANES
Menus can be popped up using the f.post wmenu and f.menu window manager functions. The
context for window manager functions that are done from a menu is root, icon or window
depending on how the menu was popped up. In the case of the window menu or menus popped
up with a key binding, the location of the keyboard input focus indicates the context. For menus
popped up using a button binding, the context of the button binding is the context of the menu.

The menu pane specification syntax is

Hewlett-Packard Company - 23- Ju128,1989

MWM(lX) MWM(lX)
Series 300 and 800 Only

Menu menu name
{ -

}

label [mnemonic] [accelerator] function
label [mnemonic] [accelerator] function

label [mnemonic] [accelerator] function

Each line in the Menu specification identifies the label for a menu item and the function to be
done if the menu item is selected. Optionally a menu button mnemonic and a menu button
keyboard accelerator may be specified. Mnemonics are functional only when the menu is posted
and keyboard traversal applies.

The label may be a string or a bitmap file. The label specification has the following syntax:

label =
bitmap Jile =
text =

text I bitmap Jile
@file name
quoted _item I unquoted _item

The string encoding for labels must be compatible with the menu font that is used. Labels are
greyed out for menu items that do the f.nop function or an invalid function or a function that
doesn't apply in the current context.

A mnemonic specification has the following syntax

mnemonic = character

The first matching character in the label is underlined. If there is no matching character in the
label, no mnemonic is registered with the window manager for that label. Although the character
must exactly match a character in the label, the mnemonic will not execute if any modifier (such as
Shift) is pressed with the character key.

The accelerator specification is a key event specification with the same syntax as is used for key
bindings to window manager functions.

ENVIRONMENT

FILES

Mwm uses the environment variable $HOME specifying the user's home directory.

/usr /lib /Xll/system.mwmrc
/usr/lib/Xll/app-defaults/Mwm
$HOME/.xdefaults
$HOMEj.mwmrc

COPYRIGHT
(c) Copyright 1989 by Open Software Foundation, Inc.
(c) Copyright 1987, 1988, 1989 by Hewlett-Packard Company
All rights reserved.

RELATED INFORMATION
X(l), VendorShell(3X), and XmlnstallImage(3X).

Hewlett-Packard Company - 24- lui 28, 1989

RESIZE (1) RESIZE (1)
Series 300 and 800 Only

NAME
resize - reset shell parameters to reflect the current size of a window

SYNOPSIS
resize [-option ...]

DESCRIPl'ION
Resize prints on its standard output the commands for setting $TERM, $LINES, and $COLUMNS
for a shell to reflect the current size of its window. The $SHELL environment variable is used to
determine the shell for which to form the commands. The $TERM environment variable is used
to determine the escape sequences to be used to determine the window size. Both of these can be
overridden by command line options.

Resize is never executed directly, but should be run via eval(1) similar to tset(1) to cause the shell
to execute the commands. For example, the following functions will reset the environment of the
current shell for sh(1) and ksh(1):

xsO { eval 'resize'; }
xrsO { eval 'resize -s $@'; }

An equivalent for csh(1) is:

alias xs 'set noglob; eval 'resize"
alias xrs 'set noglob; eval 'resize -s \!\ * ' ,

OPl'IONS

FILES

NOTES

The resize program accepts the following options listed below:

-c This option indicates that resize should format its commands for csh (1).

-h This option indicates that resize should use Hewlett Packard terminal escape sequences
to obtain the terminal's new window size.

-s [row col]
This option indicates that resize should use Sun escape sequences to obtain the terminal's
new window size. In this mode of operation, a new row and column size may be
specified on the command line.

-u This option indicates that resize should format its commands for sh(1) or ksh(1).

-x This option indicates that resize should use VI102 escape sequences to obtain the
terminal's new window size.

$HOMEj.profile
$HOMEj.cshrc

sh(1) and ksh(1) user's functions for resize.
csh(1) user's alias for resize.

"-s" must be the last option on the command line when specified.

There should be some global notion of display size; termcap and terminfo need to be rethought in
the context of window systems.

ORIGINS
MIT Distribution

SEE ALSO
sh(1), ksh(1), csh(1), eval(1), hpterm(1), tset(1), xterm(1)

Hewlett-Packard Company - 1 - Ju128, 1989

RGB(l) RGB(l)
Series 300 and 800 Only

NAME
rgb - X Window System color database creator.

SYNOPSIS
rgb [filename] [<input filename]

DESCRIYfION
rgb creates a data base used by the X window system setver for its colors. Stdin is used as its input
and must be in the format of:

For example:

0-255 0-255 0-255 colorname

o 0 0 black

o 128 0 green

255 255 255 white

rgb stands for red-green-blue. Each element can have no intensity (0) to full intensity (255). How
the elements are combined determines the actual color. The name given to the color can be
descriptive or fanciful.

In other words, the sequence:

o 0 128

can be given the name 'blue' or 'unicorn blue'. There can also be two (or more) entries with the
same element numbers or names.

ARGUMENTS
filename If filename is given, rgb produces two files; filename.dir and filename.pag. OthelWise

the default filename is /usr/lib/Xll/rgb.
ORIGIN

MIT Distribution

SEE ALSO
X(1)

Hewlett-Packard Company - 1 - lui 28, 1989

SB2XWD(1) SB2XWD(1)
Series 300 and 800 Only

NAME
sb2xwd - translate Starbase bitmap to xwd bitmap format

SYNOPSIS
sb2xwd

DESCRIPTION
This command translates a bitmap file created by one of the Starbase bitmap-to-file procedures
into an XUV format file. The XUV format is defined by the xwd(J) and xwud(J) X window dump
utility programs. The Starbase bitmap file format is described in bitmapfile(4). Translation is
done from standard input to standard output.

Starbase bitmaps created in pixel-major format will be translated into ZPixmap format xwd
bitmaps. Plane-major full-depth Starbase bitmaps are translated into XYPixmap format xwd
bitmaps.

XWD bitmaps produced by sb2xwd will be of the DirectColor visual class if the Starbase bitmap's
colormap mode is CMAP FULL. Other multiplane Starbase bitmaps having colormap modes of
CMAP NORMAL or CMAP MONOTONIC will result in Pseudo Color XWD bitmaps. Single
plane Starbase bitmaps are converted to GreyScale XWD bitmaps.

OPTIONS
none

EXAMPLES
sb2xwd < sbfile > xwdfile

Translates the Starbase image in sbfite to XWD format and places the result in xwdfile.

sb2xwd < sbimage I xwud
Translates the image in sbimage, piping the results to xwud for display.

RESTRICTIONS

ORIGIN

sb2xwd accepts only full-depth Starbase bitmaps.

Starbase bitmaps must be 1-8, 12, or 24 planes deep. Bitmaps of depth 1-8 must have either
CMAP NORMAL or CMAP MONOTONIC colormap modes. Bitmaps of depths 12 or 24 must
have the CMAP _FULL cOlormap mode.

A 12 plane bitmap must be stored in three banks and have a display enable mask of OxOF or OxFO.

Hewlett-Packard GTD

SEE ALSO
xwd(1), xwud(1), bitmapfile(4).

Starbase Graphics Techniques, HP-UX Concepts and Tutorials, chapters on "Color" and "Storing
and Printing Images".

Hewlett-Packard Company - 1- Jul28,1989

UWM(l) UWM(l)
Series 300 and 800 Only

NAME
uwm - a window manager for X

SYNTAX
uwm [options]

DESCRIPTION
The uwm program is a window manager for X.

When uwm is invoked, it searches a predefined search path to locate any uwm startup files. If no
startup files exist, uwm initializes its built-in default file.

If startup files exist in any of the following locations, it adds the variables to the default variables.
In the case of contention, the variables in the last file found override previous specifications. Files
in the uwm search path are:

/usr/lib/Xll/uwm/system.uwmrc
$HOME/.uwmrc
-ffilename

To use only the settings defined in a single startup file, include the variables resetbindings,
resetmenus, resetvariables at the top of that specific startup file.

OPTIONS
-fjilename

Names an alternate file as a uwm startup file.

-display display
Specifies the display to use; see X(l).

STARTUP FILE VARIABLES
Variables are typically entered first, at the top of the startup file. By convention, resetbindings,
resetmenus, and resetvariables head the list.

autoselect/noautoselect
places the menu cursor in the first menu item. If unspecified, the menu cursor is
placed in the menu header when the menu is displayed.

background = color
specifies the default background color for popup sizing windows, menus, and
icons. The default is to use the WhitePixel for the current screen.

bordercolor = color
specifies the default border color for popup sizing windows, menus, and icons.
The default is to use the BlackPixel for the current screen.

borderwidth = pixels

delta = pixels

specifies the default width in pixels for borders around popup sizing windows.
The default is 2.

indicates the number of pixels the cursor is moved before the action is
interpreted by the window manager as a command. (Also refer to the delta
mouse action.)

foreground = color
specifies the default foreground color for popup sizing windows, menus, and
icons. The default is to use the BlackPixel for the current screen.

freeze/nofreeze locks all other client applications out of the selVer during certain window
manager tasks, such as move and resize.

grid/nogrid displays a finely-ruled grid to help you position an icon or window during resize
or move operations.

hiconpad =pixels indicates the number of pixels to pad an icon horizontally. The default is five
pixels.

bmenupad =pixels
indicates the amount of space in pixels that each menu item is padded to the left

Hewlett-Packard Company - 1 - Ju128,1989

UWM(1)
Series 300 and 800 Only

and to the right of the text.

iborderwidth = pixels
indicates the width in pixels of the border surrounding icons.

iconfont = fontname

UWM(l)

names the font that is displayed within icons. Font names for a given seNer can
be found in /usr/lib/Xll/fonts.

maxcolors =number
limits the number of colors the window manager can use in a given invocation. If
set to zero, or not specified, uwm assumes no limit to the number of colors it can
take from the color map. maxcolors counts colors as they are included in the
file.

mborderwidth =pixels
indicates the width in pixels of the border surrounding menus.

menufont = fontname
names the font that is displayed within menus. Font names for a given server can
be found in /usr/lib/Xll/fonts.

normali/nonormali
places icons created with f.newiconify within the root window, even if it is placed
partially off the screen. With nonormali the icon is placed exactly where the
cursor leaves it.

normalw /nonormalw
places window created with f.newiconify within the root window, even if it is
placed partially off the screen. With nonormalw the window is placed exactly
where the cursor leaves it.

push = number moves a window number pixels or l/number times the size of the window,
depending on whether pushabsolute or pushrelative is specified. Use this
variable in conjunction with f.pushup, f.pushdown, f.pushright, or f.pushleft.

pushabsolute/pushrelative
pushabsolute indicates that the number entered with push is equivalent to pixels.
When an f.push (left, right, up, or down) function is called, the window is moved
exactly that number of pixels.

pushrelative indicates that the number entered with the push variable represents
a relative number. When an f.push function is called, the window is invisibly
divided into the number of parts you entered with the push variable, and the
window is moved one part.

reset bindings, resetmenus, and resetvariables
resets all previous function bindings, menus, and variable entries, specified in
any startup file in the uwm search path, including those in the default
environment. By convention, these variables are entered first in the startup file.

resizefont = fontname
identifies the font of the indicator that displays dimensions in the corner of the
window as you resize windows. Font names for a given server can be found in
/usr/lib/Xll /fol1ts.

resizerelative /noresizerelative
indicates whether or not resize operations should be done relative to moving
edge or edges. By default, the dynamic rectangle uses the actual pointer location
to define the new size.

reverse/noreverse
defines the display as black characters on a white background for the window
manager windows and icons.

viconpad =pixels indicates the number of pixels to pad an icon vertically. Default is five pixels.

Hewlett-Packard Company -2- Ju128, 1989

UWM(1)

vmenupad = pixels

UWM(l)
Series 300 and 800 Only

indicates the amount of space in pixels that the menu is padded above and below
the text.

volume=number increases or decreases the base level volume set bytheX\"et(l) command. Enter
an integer from 0 to 7, 7 being the loudest.

zap/nozap causes ghost lines to follow the window or icon from its previous default location
to its new location during a move, resize or iconify operation.

BINDING SYNTAX
function = [control key (s)]: [context]:mouse events:" menu name "

Function and mouse events are required input. Menu name is required with the f.menu function
definition only.

Function
f.beep

f.circ1edown

f.circ1eup

f.continue

f.exit

£locus

ticonify

f.kill

f.lower

f.menu

f.move

f.moveopaque

f.newiconify

f.pause

f.pusbdown

f.pusbleft

f.pusbright

(.pushup

f.raise

emits a beep from the keyboard. Loudness is determined by the volume
variable.

causes the top window that is obscuring another window to drop to the bottom
of the stack of windows.

exposes the lowest window that is obscured by other windows.

releases the window setver display action after you stop action with the f.pause
function.

causes the window manager application to quit cleanly.

directs all keyboard input to the selected window. To reset the focus to all
windows, invoke [.focus on the root window.

when implemented from a window, this function converts the window to its
respective icon. When implemented from an icon, f.iconify converts the icon to
its respective window.

kills the client that created a window.

lowers a window that is obstructing a window below it.

invokes a menu. Enclose 'menu name' in quotes if it contains blank characters
or parentheses.

f.menu= [control key(s)]:[comext]:mouse events:" menu name"

moves a window or icon to a new location, which becomes the default location.

moves a window or icon to a n~w location. When using this function, the entire
window or icon is moved to the new screen location. The grid effect is not used
with this function.

allows you to create a window or icon and then position the window or icon in a
new default location on the screen.

temporarily stops all display action. To release the screen and immediately
update all windows, use the f.continue function.

moves a window down. The distance of the push is determined by the push
variables.

moves a window to the left. The distance of the push is determined by the push
variables.

moves a window to the right. The distance of the push is determined by the push
variables.

moves a window up. The distance of the push is determined by the push
variables.

raises a window that is being obstructed by a window above it.

Hewlett-Packard Company -3- Ju128,1989

UWM(l)

f.refresh

f.resize

f.restart

UWM(l)
Series 300 and 800 Only

results in exposure events being sent to the window server clients for all
unobscured or partially obscured windows. The windows will not refresh
correctly if the exposure events are not handled properly.

resizes an existing window. Note that some clients, notably editors, react
unpredictably if you resize the window while the client is running.

causes the window manager application to restart, retracing the uwm search path
and initializing the variables it finds.

Control Keys

Context

By default, the window manager uses meta as its control key. It can also use ctrl, shift, lock, or null
(no control key). Control keys must be entered in lower case, and can be abbreviated as: c, 1, m, s
for ctrl, lock, meta, and shift, respectively.

You can bind one or more, or no control keys to a function. Use the bar (I) character to combine
control keys.

Note that client applications other than the window manager use the shift as a control key. If you
bind the shift key to a window manager function, you can not use other client applications that
require this key.

The context refers to the screen location of the cursor when a command is initiated. When you
include a context entry in a binding, the cursor must be in that context or the function will not be
activated. The window manager recognizes the following four contexts: icon, window, root, (null).

The root context refers to the root, or background window, A (null) context is indicated when the
context field is left blank, and allows a function to be invoked from any screen location. Combine
contexts using the bar (I) character.

Mouse Buttons
Any of the following mouse buttons are accepted in lower case and can be abbreviated as I, m, or
r, respectively: left, middle, right.

With the specific button, you must identify the action of that button. Mouse actions can be:

down function occurs when the specified button is pressed down.

function occurs when the specified button is released. up

delta indicates that the mouse must be moved the number of pixels specified with the delta
variable before the specified function is invoked. The mouse can be moved in any
direction to satisfy the delta requirement.

MENU DEFINITION
After binding a set of function keys and a menu name to f.menu, you must define the menu to be
invoked, using the following syntax:

menu = " menu nante " {
"item nante": "action"

}

Enter the menu name exactly the way it is entered with the f.menu function or the window
manager will not recognize the link. If the menu name contains blank strings, tabs or parentheses,
it must be quoted here and in the f.menu function entry. You can enter as many menu items as
your screen is long. You cannot scroll within menus.

Any menu entry that contains quotes, special characters, parentheses, tabs, or strings of blanks
must be enclosed in double quotes. Follow the item name by a colon (:).

Menu Action
Window manager functions

Any function previously described. E.g., f.move or f.iconify.

Hewlett-Packard Company - 4- Ju128,1989

UWM(l) UWM(l)
Series 300 and 800 Only

Shell commands

Text strings

Begin with an exclamation point (!) and set to run in background. You cannot include
a new line character within a shell command.

Text strings are placed in the window setver's cut buffer.

Strings starting with an up arrow (") will have a new line character appended to the
string after the up arrow (") has been stripped from it.

Strings starting with a bar character (I) will be copied as is after the bar character (I)
has been stripped.

Color Menus
Use the following syntax to add color to menus:

menu = "menu name" (colorl:color2:color3:color4) {
"item name" : (colorS :color6) :" action"

}

Foreground color of the header.

Background color of the header.

color1

color2

color3 Foreground color of the highlighter, the horizontal band of color that moves with the
cursor within the menu.

color4

color5

color6

Color Defaults

Background color of the highlighter.

Foreground color for the individual menu item.

Background color for the individual menu item.

Colors default to the colors of the root window under any of the following conditions:

1) If you run out of color map entries, either before or during an invocation of uwm.

2) If you specify a foreground or background color that does not exist in the RGB color database
of the setver (see /usr/lib/Xl1/rgb.txt for a sample) both the foreground and background colors
default to the root window colors.

3) If you omit a foreground or background color, both the foreground and background colors
default to the root window colors.

4) If the total number of colors specified in the startup file exceeds the number specified in the
maxcolors variable.

5) If you specify no colors in the startup file.

Customizing Icon Names
Icon names may be editted by placing the pointer inside the icon and typing. The Backspace,
Rubout and Delete keys may be used to remove a character from the end of a line and Control-U
may be used to delete the whole name.

EXAMPLES
The following sample startup file shows the default window manager options:

Global variables

resetbindings;resetvariables;resetmenus
autoselect
delta =25

Hewlett-Packard Company -5- Ju128, 1989

UWM(l) .

freeze
grid
hiconpad=5
hmenupad=6
iconfont=oldeng
menufont = timrom12b
resizefont =9x15
viconpad=5
vmenupad=3
volume =7

Series 300 and 800 Only

Mouse button/key maps

FUNCflON KEYS CONTEXT BUlTON MENU (if any)

UWM(l)

======== ==== ======= ====== ============
f.menu =
f.menu =
f.move =
f.circleup =

meta: :left down :"WINDOW OPS"
meta: :middle down :"EXTENDED WINDOW OPS"
meta :wl i :right down
meta :root :right down

Menu specifications

menu = "WINDOW OPS" {
"(De)lconify": f.iconify
Move: f.move
Resize: f.resize
Lower: f.lower
Raise: f.raise
}

menu = "EXTENDED WINDOW OPS" {
Create Window: !"xterm &"
Iconify at New Position: f.Iowericonify
Focus Keyboard on Window: f.focus
Freeze All Windows: f.pause
Unfreeze All Windows: f.continue
Circulate Windows Up: f.circleup
Circulate Windows Down: f.circledown
}

RESTRICTIONS
The color specifications have no effect on a monochrome system.

ENVIRONMENT

FILES

DISPIAY - the default host and display number.

/usr/lib/X11/uwm/system.uwmrc
$HOMEf.uwmrc

SEE ALSO
X(1), Xserver(1), xset(1), x1sfonts(1)

COPYRIGlIT
COPYRIGHT 1985, 1986, 1987, 1988

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSElTS

ALL RIGHTS RESERVED. THE INFORMATION IN THIS SOFIWARE IS SURJECf TO
CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A

Hewlett-Packard Company -6- lui 28, 1989

UWM(l)

ORIGIN

UWM(l)
Series 300 and 800 Only

COMMITMENT BY DIGITAL EQUIPMENT CORPORATION. DIGITAL MAKES NO
REPRESENTATIONS ABOUT TIlE SUmBILITY OF TIllS SOFIWARE FOR ANY
PURPOSE. IT IS SUPPLIED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. IF
TIlE SOFIWARE IS MODIFIED IN A MANNER CREATING DERIVATIVE COPYRIGHT
RIGHTS, APPROPRIATE LEGENDS MAY BE PlACED ON TIlE DERIVATIVE WORK IN
ADDmON TO TI-lAT SET FORTII ABOVE. Permission to use, copy, modify, and distribute
this software and its documentation for any purpose and without fee is hereby granted, provided
that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation, and that the name of Digital Equipment
Corporation not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission.

M. Gancarz, DEC Ultrix Engineering Group, Merrimack, New Hampshire, using some algorithms
originally by Bob Scheifler, MIT Laboratory for Computer Science.

Hewlett-Packard Company -7- Ju128,1989

X(l) X(l)
Series 300 and 800 Only

NAME
x - a portable, network transparent window system

SYNOPSIS
X is a network transparent window system developed at MIT which runs under a wide variety
of operating systems. Hewlett-Packard supports the X Window System under the Series 300
HP-UX 6.2 or higher, and the Series 800 HP-UX 3.0 or higher.

mE OFFICIAL NAMES
The official names of the software described herein are:

X
X Window System

X Version 11
X Window System, Version 11

X11

Note that the phrases X.11, X-11, X Windows or any permutation thereof, are explicitly excluded
from this list and should not be used to describe the X Window System (window system should be
thought of as one word).

X Window System is a trademark of the Massachusetts Institute of Technology.

DESCRIPTION
X window system servers run on computers with bitmap displays. The server distributes user
input to, and accepts output requests from various client programs through a variety of different
interprocess communication channels. Although the most common case is for the client programs
to be running on the same machine as the server, clients can be run transparently from other
machines (including machines with different architectures and operating systems) as well.

X supports overlapping hierarchical subwindows and text and graphics operations, on both
monochrome and color displays. For a full explanation of functions, see the Programming With
Xlib manual, the Programming With the HP X Widgets manual, and the Programming With the Xt
Intrinsics manual.

The core X protocol provides mechanism, not policy. Windows are manipulated (including
moving, resizing and iconifying) not by the server itself, but by a separate program called a
''window manager" of your choosing. This program is simply another client and requires no
special privileges. If you don't like the one that is supplied you can write your own.

The number of programs that use X is growing rapidly. Of particular interest are: two terminal
emulators (hpterm(l) andxtenn(1», window managers (mwm(l), hpwm(1), uwm(l», a bitmap
editor (bitmap(l», an access control program (xhost(l», user preference setting programs
(xset(l),xsetroot(l), andxmodmap(l», a load monitor (xload(1», clock (xclock(1», a font
displayer (xfd(1», and various demos.

DISPlAY SPECIFICATION
When you first start the window system, the environment variable DISPLAY will be set (if it hasn't
already been set to something) to 10cal:0.0, in order to take advantage of local interprocess
communication (IPC) mechanisms. By convention, servers on a particular machine are numbered
starting with zero. The following connection protocols are supported:

TCP/IP
DISPLAY should be set to "host:display.screen" where host is the symbolic name of the
machine (e.g. expo), display is the number of the display (usually 0), and screen is the
number of the screen. The screen and preceding period are optional, with the default
value being zero (0). Full Internet domain names (e.g. expo.lcs.mit.edu) are allowed for
the host name.

IPC Mechanisms
DISPLAY should be set to "local:display.screen", where display is the display number
and screen is the screen number; screen and the preceding period are optional, with the
default value being zero (0).

Hewlett-Packard Company - 1 - Ju128, 1989

X(l) X(l)
Series 300 and 800 Only

Most programs accept a command line argument of the form "-display display" that can be used
to override the DISPlAY environment variable.

GEOMETRY SPECIFICATION
One of the advantages of using window systems over hardwired terminals is that applications don't
have to be restricted to a particular size or location on the screen. Although the layout of windows
on a display is controlled by the window manager that the user is running, most applications
accept a command line argument that is treated as the preferred size and location for this
particular application's window.

This argument, usually specified as "-geometry WxH + X + Y," indicates that the window should
have a width of W and height of H (usually measured in pixels or characters, depending on the
application), and the upper left comer X pixels to the right and Y pixels below the upper left
comer of the screen (origin (0,0)). "WxH" can be omitted to obtain the default application size,
or "+ X + Y" can be omitted to obtain the default application position (which is usually then left
up to the window manager or user to choose). The X and Y values may be negative to position
the window off the screen. In addition, if minus signs are used instead of plus signs (e.g. WxH-X­
Y), then (X,Y) represents the location of the lower right hand comer of the window relative to the
lower right hand comer of the screen.

By combining plus and minus signs, the window may be placed relative to any of the four comers
of the screen. For example:

555x333 + 11 + 22
This will request a window 555 pixels wide and 333 pixels tall, with the upper left comer
located at (11,22).

300x200-0 + 0
This will request a window measuring 300 by 200 pixels in the upper right hand comer of
the screen.

48x48-5-10
This will request a window measuring 48 by 48 pixels whose lower right hand comer is 5
pixels off the right edge of the screen and 10 pixels off the bottom edge.

COMMAND LINE ARGUMENTS
Most X programs attempt to use a common set of names for their command line arguments. The
X Toolkit automatically handles the following arguments:

-bg color, -background color
Either option specifies the color to use for the window background.

-bd color, -bordercolor color
Either option specifies the color to use for the window border.

-bw number, -borderwidth number
Either option specifies the width in pixels of the window border.

-display display
This option specifies the name of the X setver to use.

-fg color, -foreground color
Either option specifies the color to use for text or graphics.

-fn font, -font font
Either option specifies the font to use for displaying text. The font is in one of the
directories listed when executing xset q.

-geometry geometry

-iconic

-name

This option specifies the initial size and location of the window.

This option indicates that application should start out in an iconic state. Note that how
this state is represented is controlled by the window manager that the user is running.

This option specifies the name under which resources for the application should be

Hewlett-Packard Company -2- 1u128,1989

X(l)
Series 300 and 800 Only

found. This option is useful in shell aliases to distinguish between invocations of an
application, without resorting to creating links to alter the executable file name.

X(l)

-rv, -reverse

+rv

Either option indicates that the program should simulate reverse video if possible, often
by swapping the foreground and background colors. Not all programs honor this or
implement it correctly. It is usually only used on monochrome displays.

This option indicates that the program should not simulate reverse video. This is used to
override any defaults since reverse video doesn't always work properly.

-synchronous
This option indicates that requests to the X server should be sent synchronously, instead
of asynchronously. Since Xlib normally buffers requests to the server, errors do not
necessarily get reported immediately after they occur. This option turns off the buffering
so that the application can be debugged. It should never be used with a working
program.

-title string
This option specifies the title to be used for this window. This information is used by
some window managers to provide some sort of header identifying the window.

-xrm resourcestring
This option specifies a resource name and value to override any defaults. It is also very
useful for setting resources that don't have explicit command line arguments.

RESOURCES
To make the tailoring of applications to personal preferences easier, X supports several
mechanisms for storing default values for program resources (e.g. background color, window title,
etc.) Resources are specified as strings of the form "name*subname*subsubname ... : value" (see
the Xlib manual section Using the Resource Mmzager for more details) that are loaded into a client
when it starts up. The Xlib routine XGetDefault(3X) and the resource utilities within the X
Toolkit obtain resources from the following sources:

RESOURCE MANAGER root window property
Any global resources that should be available to clients on all machines should be stored
in the RESOURCE_MANAGER property on the root window.

application-specific directory
Any application- or machine-specific resources can be stored in the class resource files
located in the /usr/lib/Xll/app-defaults directory.

$XENVIRONMENT
Any user- and machine-specific resources may be specified by setting the
$XENVIRONMENT environment variable to the name of a resource file to be loaded
by all applications. If this variable is not defined, the X Toolkit looks for a file named
.xdefaults-hostname, where hostname is the name of the host where the application is
executing.

-xrm resourcestring
Applications that use the X Toolkit can have resources specified from the command line.
The resourcestring is a single resource name and value as shown above. Note that if the
string contains characters interpreted by the shell (e.g., asterisk), they must be quoted.
Any number of -xrm arguments may be given on the command line.

Program resources are organized into groups called "classes," so that collections of individual
"instance" resources can be set all at once. By convention, the instance name of a resource begins
with a lowercase letter and class name with an upper case letter. Multiple word resources are
concatenated with the first letter of the succeeding words capitalized. Applications written with
the X Toolkit will have at least the following resources:

background (class Background)
This resource specifies the color to use for the window background.

Hewlett-Packard Company -3- Ju128,1989

X(l) X(l)
Series 300 and 800 Only

borderWidth (class BorderWidth)
This resource specifies the width in pixels of the window border.

borderColor (class BorderColor)
This resource specifies the color to use for the window border.

Most X Toolkit applications also have the resource foreground (class Foreground), specifying the
color to use for text and graphics within the window.

By combining class and instance specifications, application preferences can be set quickly and
easily. Users of color displays will frequently want to set Background and Foreground classes to
particular defaults. Specific color instances such as text cursors can then be overridden without
having to define all of the related resources.

When a named resource is unavailable (for example, a color named chartreuse or a font named
teeneyweeney), normally no error message will be printed; whether or not useful results ensue is
dependent on the particular application. If you wish to see error messages (for example, if an
application is failing for an unknown reason), you may specify the value "on" for the resource
named "StringConversionWarnings." If you want such warnings for all applications, specify
"*StringConversionWarnings:on" to the resource manager. If you want warnings only for a single
application named "zowie", specify "zowie*StringConversionWarnings:on" to the resource
manager.

The available colors are found in the file /usr/lib/Xll/rgb.txt. See rgb(l) for information on
creating a new color database.

DIAGNOSTICS
The default error handler uses the Resource Manager to build diagnostic messages when error
conditions arise. The default error database is stored in the file XErrorDB in the /usr/lib/Xll
directory. If this file is not installed, error messages will tend to be somewhat cryptic.

COPYRIGHT

ORIGIN

The following copyright and permission notice outlines the rights and restrictions covering most
parts of the standard distribution of the X Window System from MIT. Other parts have additional
or different copyrights and permissions; see the individual source files.

Copyright 1984,1985,1986,1987,1988, Massachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. M.lT. makes no
representations about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

This software is not subject to any license of the American Telephone and Telegraph Company or
of the Regents of the University of California.

MIT Distribution

SEE ALSO
bitmap(1), gwindstop(1), hpterm(1), init(1M), rgb(1), uwm(1), x10toxll(1), xllstart(l), xclock(1),
xfc(1), xfd(1), xhost(1), xinit(1), xinitcolormap(1), x1oad(1), xmodmap(1), xrefresh(1), xseethru(1),
Xserver(1), xset(1), xsetroot(1), xterm(1), xwcreate(1), xwd(1), xwdestroy(1), xwininfo(l), xwud(1),
Programming With Xlib, Programming With the HP X Widgets and Xt Intrinsics

Hewlett-Packard Company -4- Ju128, 1989

X11START(1) X11START (1)
Series 300 and 800 Only

NAME
xllstart - start the Xll window system

SYNOPSIS
x11start [options)

DESCRIPTION

FILES

ORIGIN

xllstart starts up the X window system by running the Xll window server and selected Xll clients.
By default, hpterm(l) and mwm(l) are run by xllstart.

xllstart is a shell script that first checks the user's home directory for a Xdefaults file. If there is
no Xdefaults file there, then the file /usr/lib/Xll/sysXdefaults (if it exists) will be used as a
source file for xrdb(l), to create a RESOURCE MANAGER property. This is done by setting
the variable $doxrdb, which is executed in the .xllstart file, and thus under user control.

xllstart will modify the PAm variable as needed to assure that /usr/bin/XU is in the users
PAm variable in front of /usr/bin.

xllstart then runs xinit using the shell script .xllstart from the user's home directory as the first
argument for xinit. If that script does not exist or is not executable, then the script
/usr/lib/Xll/sys.xllstart is used as the argument for xinit. In any case the arguments passed to
xllstart are passed on to xinit following the .xllstart argument.

/usr/lib/Xll/sys.xllstart
$HOME/.xUstart
/usr /lib /Xll/sys.xdefaults
$HOME/.xdefaults

Hewlett-Packard Company

SEE ALSO
X(I), xinit(l), hpterm(I), mwm(l), xrdb(l)

Hewlett-Packard Company - 1 - Ju128,1989

XCLOCK(l) XCLOCK(l)
Series 300 and 800 Only

NAME
xclock - analog / digital clock for X

SYNOPSIS
xclock [toolkitoptions] [options]

DESCRIPTION
The xclock program displays the time in analog or digital form. The time is continuously updated
at a frequency which maybe specified by the user. This program is nothing more than a wrapper
around the Athena Clock widget.

OPTIONS
xclock accepts all of the standard X Toolkit command line options along with the additional
options listed below:

-help This option indicates that a brief summary of the allowed options should be printed on
the standard error.

-analog This option indicates that a conventional 12 hour clock face with tick marks and hands
should be used. This is the default.

-digital This option indicates that a 24 hour digital clock should be used.

-chime This option indicates that the clock should chime once on the half hour and twice on the
hour.

-hd color
This option specifies the color of the hands on an analog clock. The default is black.

-hi color This option specifies the color of the edges of the hands on an analog clock, and is only
useful on color displays. The default is black.

-update seconds
This option specifies the frequency in seconds at which xclock should update its display.
If the clock is obscured and then exposed, it will be updated immediately. A value of less
than 30 seconds will enable a second hand on an analog clock. The default is 60 seconds.

-padding number
This option specifies the width in pixels of the padding between the window border and
clock text or picture. The default is 10 on a digital clock and 8 on an analog clock.

The following standard X Toolkit command line arguments are commonly used with xclock:

-bg color
This option specifies the color to use for the background of the window. The default is
white.

-bd color
This option specifies the color to use for the border of the window. The default is black.

-bwnumber
This option specifies the width in pixels of the border surrounding the window.

-fg color This option specifies the color to use for displaying text. The default is black.

-fnfont This option specifies the font to be used for displaying normal text. The default is 6xlO.

-rv This option indicates that reverse video should be simulated by swapping the foreground
and background colors.

-geometry geometry
This option specifies the preferred size and position of the clock window.

-display host:display
This option specifies the X server to contact.

-xrm resourcestring
This option specifies a resource string to be used.

X DEFAULTS
This program uses the Clock widget in the X Toolkit. It understands all of the core resource

Hewlett-Packard Company -1- Ju128,1989

XCLOCK(l) XCLOCK(1)

names and classes as well as:

width (class Width)

Series 300 and 800 Only

Specifies the width of the clock. The default for analog clocks is 164 pixels; the default
for digital clocks is whatever is needed to hold the clock when displayed in the chosen
font.

height (class Height)
Specifies the height of the clock. The default for analog clocks is 164 pixels; the default
for digital clocks is whatever is needed to hold the clock when displayed in the chosen
font.

update (class Interval)
Specifies the frequency in seconds at which the time should be redisplayed.

foreground (class Foreground)
Specifies the color for the tic marks. The default is black since the core default for
background is white.

hands (class Foreground)
Specifies the color of the insides of the clock's hands.

highlight (class Foreground)
Specifies the color used to highlight the clock's hands.

analog (class Boolean)
Specifies whether or not an analog clock should be used instead of a digital one. The
default is True.

chime (class Boolean)
Specifies whether or not a bell should be rung on the hour and half hour.

padding (class Margin)
Specifies the amount of internal padding in pixels to be used. The default is 8.

font (class Font)
Specifies the font to be used for the digital clock. Note that variable width fonts
currently will not always display correctly.

reverseVideo (class ReverseVideo)
Specifies that the foreground and background colors should be reversed.

SEE ALSO
X(I), xrdb(I), time(3C)

ENVIRONMENT

BUGS

DISPLAY - the default host and display number.

xclock believes the system clock.

When in digital mode, the string should be centered automatically.

Border color has to be explicitly specified when reverse video is used.

COPYRIGHT

ORIGIN

Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

Tony Della Fera (MIT-Athena, DEC)
Dave Mankins (MIT-Athena, BBN)
Ed Moy (Ue Berkeley)

Hewlett-Packard Company - 2- Ju128, 1989

XFD(l) XFD(l)
Series 300 and 800 Only

NAME
xfd - font displayer for X

SYNOPSIS
xfd [options]

OPTIONS
-display display

Specifies the display to use.

-geometry geometry
Specifies an initial window geometry.

-bwnumber
Allows you to specify the width of the window border in pixels.

-rv The foreground and background colors will be switched. The default colors are black on
white.

-fw Overrides a previous choice of reverse video. The foreground and background colors
will not be switched.

-fg color On color displays, determines the foreground color (the color of the text).

-bgcolor
On color displays, determines the background color.

-bd color
On color displays, determines the color of the border.

-fnfontname
Specifies the font to be displayed.

-bf fontname
Specifies the font to be used for the messages at the bottom of the window.

-tl title Specifies that the title of the displayed window should be title.

-in iconname
Specifies that the name of the icon should be iconname.

-icon filename
Specifies that the bitmap in file filename should be used for the icon.

-verbose Specifies that extra information about the font should be displayed.

-gray Specifies that a gray background should be used.

-start chamum
Specifies that character number chamum should be the first character displayed.

DESCRIPTION
xfd creates a window in which the characters in the named font are displayed. The characters are
shown in increasing order from left to right, top to bottom. The first character displayed at the
top left will be character number 0 unless the -start option has been supplied in which case the
character with the number given in the -start option will be used.

The characters are displayed in a grid of boxes, each large enough to hold any single character in
the font. If the -gray option has been supplied, the characters will be displayed using
XDrawImageString using the foreground and background colors on a gray background. This
permits determining exactly how XDrawImageString will draw any given character. If -gray has
not been supplied, the characters will simply be drawn using the foreground color on the
background color.

All the characters in the font may not fit in the window at once. To see additional characters, click
the right mouse button on the window. This will cause the next window full of characters to be
displayed. Clicking the left mouse button on the window will cause the previous window full of
characters to be displayed. xfd will beep if an attempt is made to go back past the Oth character.

Hewlett-Packard Company - 1 - Ju128,1989

XFD(1) XFD(l)
Series 300 and 800 Only

Note that ifthe font is a 8 bit font, the characters 256-511 (1oo-1ff in hexidecimal), 512-767 (200-2ff
in hexidecimal), ... will display exactly the same as the characters 0-255 (oo-ff in hexidecimal). xfd
by default creates a window big enough to display 16 rows of 16 columns (totally 256 characters).

Clicking the middle button on a character will cause that character's number to be displayed in
both decimal and hexidecimal at the bottom of the window. If verbose mode is selected,
additional information about that particular character will be displayed as well. The displayed
information includes the width of the character, its left bearing, right bearing, ascent, and its
descent. If verbose mode is selected, typing' <' or '>' into the window will display the minimum
or maximum values respectively taken on by each of these fields over the entire font.

The font name is intetpreted by the X server. To obtain a list of all the fonts available, see the
/usr/lib/Xll/fonts directory and its subdirectories.

The window stays around until the xfd process is killed or one of 'q', '0', ' " or ctrl-c is typed into
the xfd window.

X DEFAULTS
xfd uses the following X resources:

BorderWidth Set the border width of the window.

BorderColor

ReverseVideo

Foreground

Background

BodyFont

IconName

IconBitmap

Title

Set the border color of the window.

If "on", reverse the definition of foreground and background color.

Set the foreground color.

Set the background color.

Set the font to be used in the body of the window. (I.e., for messages, etc.) This
is not the font thatxfd displays, just the font it uses to display information about
the font being displayed.

Set the name of the icon.

Set the file we should look in to get the bitmap for the icon.

Set the title to be used.

ENVIRONMENT
DISPlAY - the default host and display number.

SEE ALSO
X(1), xlsfonts(1), xrdb(1)

BUGS
It should display the name of the font somewhere.

Character information displayed in verbose mode is sometimes clipped to the window boundary,
hiding it from view.

It should be rewritten to use the X toolkit.

It should skip over pages full of non-existent characters.

COPYRIGHT

ORIGIN

Copyright 1988, Massachusetts Institute of Technology.
See XCl) for a full statement of rights and permissions.

Mark Lillibridge, MIT Project Athena

Hewlett-Packard Company -2- Jul28,1989

XHOST(l) XHOST(l)
Series 300 and 800 Only

NAME
xhost - server access control program for X

SYNOPSIS
most [[+-]hostname ...]

DESCRIPTION
The xhost program is used to add and delete hosts to the list of machines that are allowed to make
connections to the X server. This provides a rudimentary form of privacy control and security. It
is only sufficient for a workstation (single user) environment, although it does limit the worst
abuses. Environments which require more sophisticated measures should use the hooks in the
protocol for passing authentication data to the server.

The server initially allows network connections only from programs running on the same machine
or from machines listed in the file /ete/X*.hosts (where • is the display number of the server).
The xhost program is usually run either from a startup file or interactively to give access to other
users.

Hostnames that are followed by two colons (::) are used in checking DECnet connections; all
other hostnames are used for TCP /IP connections.

OPTIONS

FILES

xhost accepts the command line options described below. For security, the options that effect
access control may only be run from the same machine as the server.

[+]hostname
The given hostname (the plus sign is optional) is added to the list of machines that are
allowed to connect to the X server.

-hostname
The given hostname is removed from the list of machines that are allowed to connect to
the server. Existing connections are not broken, but new connection attempts will be
denied. Note that the current machine is allowed to be removed; however, further
connections (including attempts to add it back) will not be permitted. Resetting the
server (thereby breaking all connections) is the only way to allow local connections again.

+ Access is granted to everyone, even if they aren't on the list of allowed hosts (i.e. access
control is turned oft).

Access is restricted to only those machines on the list of allowed hosts (i.e. access control
is turned on).

nothing If no command line arguments are given, the list of hosts that are allowed to connect is
printed on the standard output along with a message indicating whether or not access
control is currently enabled. This is the only option that may be used from machines
other than the one on which the server is running.

/etc/X· .hosts

SEE ALSO
X(l), Xserver(l)

ENVIRONMENT
DISPLAY

to get the host and display to use.

NOTES
You can't specify a display on the command line because -display is a valid command line
argument (indicating that you want to remove the machine named "display" from the access list).

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(J) for a full statement of rights and permissions.

ORIGIN
MIT Distribution

Hewlett-Packard Company -1 - Ju128, 1989

XINIT(l) XINIT(l)
Series 300 and 800 Only

NAME
xinit - X Window System initializer

SYNOPSIS
xinit [[client) options) [-- [setver) [display) options)

DESCRIPTION
The xinit program is used to start the X Window System setver and a first client program (usually
a terminal emulator) on systems that do not start X directly from /etc/init or in environments that
use multiple window systems. When this first client exits, xinit will kill the X server and then
terminate.

Unless otherwise specified on the command line, xinit sets $DISPlAY to hostname:O.O, and
exports it. hostname is the name of the system invokingxinit as returned by gethostname(2).

If no specific client program is given on the command line, xinit will look for a file in the user's
home directory called xinitrc to run as a shell script to start up client programs. If no such file
exists, xinit will use the following as a default:

xterm -geometry + 1 + 1 -n login

If no specific setver program is given on the command line, xinit will look for a file in the user's
home directory called .xselvelTc to run as a shell script to start up the server. If no such file exists,
xinit will use the following as a default:

X:O

Note that this assumes that there is a program named X in the current search path.

An important point is that programs which are run by xinitrc and by.xseIVeITc should be run in the
background if they do not exit right away, so that they don't prevent other programs from starting
up. However, the last long-lived program started (usually a window manager or terminal
emulator) should be left in the foreground so that the script won't exit (which indicates that the
user is done and thatxinit should exit).

An alternate client and/or server may be specified on the command line. The desired client
program and its arguments should be given as the first command line arguments to xinit. To
specify a particular server command line, append a double dash (--) to the xinit command line
(after any client and arguments) followed by the desired setver comand.

Both the client program name and the setver program name must begin with a slash (f) or a
period (.). Otherwise, they are treated as an arguments to be appended to their respective startup
lines. This makes it possible to add arguments (for example, foreground and background colors)
without having to retype the whole command line.

If an explicit setver name is not given and the first argument following the double dash (--) is a
colon followed by a digit, xinit will use that number as the display number instead of zero. It will
be incorporated into the DISPlAY variable. All remaining arguments are appended to the server
command line.

EXAMPLES
Below are several examples of how command line arguments in xinit are used.

xinit This will start up a setver named X if .xseIVeJTC doesn't exist, and run the user's .xinitrc, if
it exists, or else start an xtenn.

xinit -- /usr/bin/Xll/Xqdss:l
This is how one could start a specific type of setver on an alternate display.

xinit -geometry = 80x65 + 10 + 10 -fn 8x13 oj -fg white -bg navy
This will start up a server named X or .xseIVeITC, and will append the given arguments to
the default xtenn command. It will ignore xinitrc.

xinit -e widgets -- ./Xsun -I.e
This will use the command ./XsUIl -l-c to start the setver and will append the arguments

Hewlett-Packard Company - 1- Ju128,1989

XINIT(1) XINIT(l)
Series 300 and 800 Only

-e widgets to the default xterm command.

xinit remsh fasthost cpupig -display ws:l - :1 -a 2 -t S
This will start a sexver named X on display 1 with the arguments -a 2 -t 5. It will then
start a remote shell on the machine fasthost in which it will run the command cpupig,
telling it to display back on the local workstation.

Below is a sample xinitrc that starts a clock, several terminals, and leaves the window manager
running as the "last" application. Assuming that the window manager has been configured
properly, the user then chooses the "Exit" menu item to shut down X.

xrdb -load $HOMEf.Xres
.xsetroot -solid gray &
xclock -geometry 50XSO-0+0 -bw 0 &
xload -geometry 50xSO-50 + 0 -bw 0 &
hpterm -geometry 80x24 + 0 + 0 &
hpterm -geometry 80x24 + 0-0 &
mwm

Sites that want to create a common startup environment could 'simply create a default xinitrc that
references a site-wide startup file:

#!/bin/sh
. /usr/local/lib/site.xinitrc

Another approach is to write a script that starts xinit with a specific shell script. Such scripts are
usually named xll, xstan, or startx and are a convenient way to provide a simple interface for
novice users:

#!/bin/sh
xinit /usr/local/bin/startx -- /usr/bin/Xll/X:1

Hewlett Packard supplies /usr/bin/xllstart and /usr/lib/Xll/sys.xllstart for this purpose.

ENVIRONMENT VARIABLES
DISPlAY

If not already set, gets set to hostname:O.O or hostname:number.O, where number is
specified on the command line to the seNer (as in xinit -- :1). If DISPLAY is already set,
the display number is passed to the sexver. DISPLAY specifies the name of the display to
which clients may connect.

XINITRC
This variable specifies an init file containing shell commands to start up the initial
windows. By default, xinitrc in the home directory will be used.

XSERVERC
This variable specifies an init file containing shell commands to start up the sexver. By
default, .xsetvem: in the home directory will be used.

SEE ALSO
X(1), Xserver(l), xterm(l), xrdb(l), x11start(1)

COPYRIGHT

ORIGIN

Copyright 1988, Massachusetts Institute of Technology.
See X(J) for a full statement of rights and permissions.

MIT Distribution

Hewlett-Packard Company -2- Ju128, 1989

XINlTCOWRMAP(l) XINITCOWRMAP(l)
Series 300 and 800 Only

NAME
xinitcolormap - initialize the X colormap

SYNOPSIS
xinitcolormap [options]

DESCRIPTION
This program is used to initialize the X colormap. Specific X colormap entries (pixel values) are
made to correspond to specified colors. An initialized colormap is required by applications that
assume a predefined colormap (e.g., many applications that use Star base graphics).

xinitcolormap reads a colormap file to determine the allocation of colors in the X colormap. The
name of the colormap file is determined by using (in the following order) the command line
option [-f cOlormapfile] , the. Colormap X default value or /usr /lib /Xll /xcolormap. If a colormap
file is not found, then the following default colormap specification is assumed.

black (colormap entry 0)
white
red
yellow
green
cyan
blue
magenta (colormap entry 7)

xinitcolormap uses the XStoreColor and XAliocColor libXJ1.a calls to initialize the X colormap.
The xinitcolormap program should be the first X client program run when the X Window System is
started in order to assure that X colormap entries have the color associations specified in the
colormap file. This could be done by running xinitcolormap as the first X client program in the
.xllstart file. Once xinitcolormap has been run, an X client program can use the initialized colors.

A colormap file is made up of lines of the form:

color

color is a one or two word color name (refer to the names in the file /usr/lib/Xll/rgb.txt), or
optionally an initial sharp character followed by a numeric RGB specification (as used by the
libXa call XParseColor). The line number of a color specification in the colormap file determines
the index of the color in the X colormap. Colors in the colormap file, for colormap entry 0 up to
the last colormap entry to be initialized, must be specified. There should be no extra (blank or
comment) lines in the colormap file. The first two entries in the colormap file must be black and
white. Also, a color may be specified more than once in the colormap file.

OPTIONS

NOTES

-f colormapfile
Specifies the file containing the cOlormap.

-display display
Specifies the server to connect to; See X(J) for details.

-c count If count is specified then only the first count colors from the colormap file will be used in
initializing the X colormap.

-p If the -p option is specified then the colormap file will be checked for proper syntax, but
the X colormap will not be initialized.

-k[illJ If the -k[ill] option is specified, then the colormap entries allocated by a previous run of
xinitcolormap will be deallocated and the colormap will not be re-initialized. All other
options will be ignored except -display display.

xinitcolormap will only initialize the default colormap of the root window.

Hewlett-Packard Company - 1- Jul28,1989

XINlTCOWRMAP(l) XINITCOWRMAP(l)

FILES

Series 300 and 800 Only

xinitcolormap assumes the first two colors specified are black and white.

xinitc%rmap should not be run in the background. The X colormap is fully initialized only when
xinitcolormap returns.

Runningxinitcolormap a second time after X is started will deallocate those colors allocated by a
previous run and attempt to allocate a new colormap using the new specifications. If other clients
have allocated color cells that conflict with the new specifications, xinitc%rmap will fail and the
colormap will remain un-allocated.

The file /etc/newconfig/xcolormap is a sample colormap file that corresponds to the Starbase
default 256 entry colormap. The [-c count] option can be used to select a subset of the colors in
this colormap file for initializing colormaps with up to 256 entries.

xinitcolormap uses XSetCloseDownMode with RetainPermanent to prevent the deallocation of the
colormap. This means that xinitcolormap no longer spawns a daemon, and the only way for the
user to be sure that xinitcolormap succeeded is to view the messages (or lack ot) produced by
xinitcolormap. Ifxllstart is used, the output should be redirected fromxinitcolormap to a log file.

xinitcolormap will not work on True Color visuals.

/usr /lib /Xll/xcolormap
/usr/lib/Xll/rgb.txt
/etc/newconfig/xcolormap
.xllstart

Hewlett-Packard Company -2- Ju128, 1989

XLOAD(l) XLOAD(1)
Series 300 and 800 Only

NAME
xload - load average display for X

SYNOPSIS
xload [toolkitoptions] [options]

DESCRIPTION
The xload program displays a periodically updating histogram of the system load average. This
program is nothing more than a wrapper around the Athena Load widget.

OPTIONS
xload accepts all of the standard X Toolkit command line options along with the following
additional options:

-scale integer
This option specifies the minimum number of tick marks in the histogram, where one
division represents one load average point. If the load goes above this number, xload
will create more divisions, but it will never use fewer than this number. The default is 1.

-update seconds
This option specifies the frequency in seconds at which xload updates its display. If the
load average window is uncovered (by moving windows with a window manager or by the
xrefresh program), the graph will be also be updated. The minimum amount of time
allowed between updates is 1 second. The default is 5 seconds.

-hi color This option specifies the color of the label and scale lines.

The following standard X Toolkit arguments are commonly used with xload:

-bd color
This option specifies the border color. The default is black.

-bgcolor
This option specifies the background color. The default is white.

-bw pixels
This option specifies the width in pixels of the border around the window. The default
value is 2.

-fg color This option specifies the graph color. The default color is black.

-fn fontname
This option specifies the font to be used in displaying the name of the host whose load is
being monitored. The default is 6xlO.

-rv This option indicates that reverse video should be simulated by swapping the foreground
and background colors.

-geometry geometry
This option specifies the preferred size and postion of the window.

-display display
This option specifies the X server to contact.

-xmt resourcestring
This option specifies a resource string to be used. This is especially useful for setting
resources that do not have separate command line options.

X DEFAULTS
This program uses the Load widget in the X Toolkit. It understands all of the core resource
names and classes as well as:

width (class Width)
Specifies the width of the load average graph.

height (class Height)
Specifies the height of the load average graph.

update (class Interval)
Specifies the frequency in seconds at which the load should be redisplayed.

Hewlett-Packard Company - 1 - Jul28,1989

XLOAD(l) XWAD(l)
Series 300 and 800 Only

scale (class Scale)
Specifies the initial number of ticks on the graph. The default is 1.

miDScale (class Scale)
Specifies the minimum number of ticks that will be displayed. The default is 1.

foreground (class Foreground)
Specifies the color for the graph. The default is black since the core default for
background is white.

highlight (class Foreground)
Specifies the color for the text and scale lines. The default is the same as for the
foreground resource.

label (class Label)
Specifies the label to use on the graph. The default is the hostname.

font (class Font)
Specifies the font to be used for the label. The default is fixed.

reverseVideo (class ReverseVideo)
Specifies that the foreground and background should be reversed.

ENVIRONMENT
DISPlAY - the default host and display number.

SEE ALSO
X(1), xrdb(1), mem(4), Athena Load widget

DIAGNOSTICS

BUGS

Unable to open display or create window. Unable to open /dev/kmem. Unable to query window
for dimensions. Various X errors.

This program requires the ability to open and read the special system file /dev/kmem. Sites that
do not allow general access to this file should makexload belong to the same group as /dev/kmem
and turn on the set group id permission flag.

Reading /dev/kmem is inherently non-portable. Therefore, the widget upon which this
application is based must be ported to each new operating system.

Border color has to be explicitly specified when reverse video is used.

COPYRIGIIT

ORIGIN

Copyright 1988, Massachusetts Institute of Technology.
See XCI) for a full statement of rights and permissions.

K. Shane Hartman (MIT-LCS) and Stuart A. Malone (MIT-LCS);
with features added by Jim Gettys (MIT-Athena), Bob Scheifler (MIT-LCS), and Tony Della Fera
(MIT-Athena)

Hewlett-Packard Company -2- Ju128,1989

XLSFONTS(l) XLSFONTS(l)
Series 300 and 800 Only

NAME
xlsfonts - server font list displayer for X

SYNOPSIS
x1sfonts [-options ... J [-fn pattern]

DESCRIPTION
Xlsfonts lists the fonts that match the given pattern. The wildcard character ,,*" may be used to
match any sequence of characters (including none), and "?" to match any single character. If no
pattern is given, n*" is assumed.

The "*" and .,?" characters must be quoted to prevent them from being expanded by the shell.

OPTIONS
-display host:dpy

This option specifies the X server to contact.

-I This option indicates that a long listing should be generated for each font.

-L This option indicates that a very long listing showing the individual character me tries
should be printed.

-m This option indicates that long listings should also print the minimum and maximum
bounds of each font.

-C This option indicates that listings should use multiple columns. This is the same as -n O.

-1 This option indicates that listings should use a single column. This is the same as -n 1.

-w width This option specifies the width in characters that should be used in figuring out how
many columns to print. The default is 79.

-ncolumns
This option specifies the number of columns to use in displaying the output. By default,
it will attempt to fit as many columns of font names into the number of character
specified by -w width.

SEE ALSO
X(1), Xserver(l), xset(1), xfd(l)

ENVIRONMENT
DISPlAY

to get the default host and display to use.

BUGS
Doing "xlsfonts -I" can tie up your server for a very long time. This is really a bug with single­
threaded non-preemptible servers, not with this program.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

ORIGIN
Mark Lillibridge, MIT Project Athena

Hewlett-Packard Company ~1- Ju128,1989

XMODMAP(l) XMODMAP(l)
Series 300 and 800 Only

NAME
xmodmap - utility for modifying keymaps in X

SYNOPSIS
xmodmap [-options ...] [filename]

DESCRIPTION
The xmodmap program is used to edit or display the keyboard modifier map and keymap table
that are used by client applications to convert event keycodes into keysyms. It is usually run from
the user's session startup script to configure the keyboard according to personal tastes.

OPTIONS
The following options may be used with xmodmap:

-display display
This option specifies the host and display to use.

-help This option indicates that a brief description of the command line arguments should be
printed on the standard error. This will be done whenever an unhandled argument is
given to xmodmap.

-grammar
This option indicates that a help message describing the expression grammar used in
files and with -e expressions should be printed on the standard error.

-verbose This option indicates thatxmodmap should print logging information as it parses its
input.

-quiet This option turns off the verbose logging. This is the default.

-n This option indicates that xmodmap should not change the mappings, but should display
what it would do, like make(1) does when given this option.

-e expression
This option specifies an expression to be executed. Any number of expressions may be
specified from the command line.

-pm This option indicates that the current modifier map should be printed on the standard
output. This is the default.

-pk This option indicates that the current keymap table should be printed on the standard
output.

-pp This option indicates that the current pointer map should be printed on the standard
output.

A lone dash means that the standard input should be used as the input file.

Thefilename specifies a file containingxmodmap expressions to be executed. This file is usually
kept in the user's home directory with a name like xmodmaprc.

EXPRESSION GRAMMAR
The xmodmap program reads a list of expressions and parses them all before attempting execute
any of them. This makes it possible to refer to keysyms that are being redefined in a natural way
without having to worry as much about name conflicts.

keycode NUMBER = KEYSYMNAME ...
The list of keysyms is assigned to the indicated keycode (which may be specified in
decimal, hex or octal) The order of assignment is no modifier, shift, modi, shift+modl.

keysymKEYSYMNAME = KEYSYMNAME ...
The KEYSYMNAME on the left hand side is looked up to find its current keycode and
the line is replaced with the appropriate keycode expression. Note that if you have the
same keysym bound to multiple keys, this might not work.

clear MODIFIERNAME
This removes all entries in the modifier map for the given modifier, where valid name
are: Shift, Lock, Control, Modi, Mod2, Mod3, Mod4 and ModS (case does not matter in
modifier names, although it does matter for all other names). For example, "clear Lock"

Hewlett-Packard Company -1- Ju128,1989

XMODMAP(1) XMODMAP(l)
Series 300 and 800 Only

will remove all any keys that were bound to the shift lock modifier.

add MODIFIERNAME = KEYSYMNAME ...
This adds the given keysyms to the indicated modifier map. The keysym names are
evaluated after all input expressions are read to make it easy to write expressions to swap
keys (see the EXAMPLES section).

remove MODIFIERNAME = KEYSYMNAME ...
This removes the given keysyms from the indicated modifier map. Unlike add, the
keysym names are evaluated as the line is read in. This allows you to remove keys from
a modifier without having to worry about whether or not they have been reassigned.

pointer = default
This sets the pointer map back to its default settings (button 1 generates a code of 1,
button 2 generates a 2, etc.).

pointer = NUMBER ...
This sets to pointer map to contain the indicated button codes. The list always starts
with the first physical button.

Lines that begin with an exclamation point (!) are taken as comments.

If you want to change the binding of a modifier key, you must also remove it from the appropriate
modifier map.

EXAMPLES
Many pointers are designed such the first button is pressed using the index finger of the right
hand. People who are left-handed frequently find that it is more comfortable to reverse the
button codes that get generated so that the primary button is pressed using the index finger of the
left hand. This could be done on a 3 button pointer as follows:

% xmodmap -e ''pointer = 321"

Many editor applications support the notion of Meta keys (similar to Control keys except that
Meta is held down instead of Control). However, some servers do not have a Meta keysym in the
default keymap table, so one needs to be added by hand. The following command will attach
Meta to the Select key. It also takes advantage of the fact that applications that need a Meta key
simply need to get the keycode and don't require the keysym to be in the first column of the
keymap table. This means that applications that are looking for a Multi key (including the default
modifier map) won't notice any change. -

% xmodmap -e 'keysym Select = Select Meta _ L'

One of the more simple, yet convenient, uses of xmodmap is to set the keyboard's "rub out" key to
generate an alternate keysym. This frequently involves exchanging Backspace with Delete to be
more comfortable to the user. If the ttyModes resource in xterm is set as well, all terminal
emulator windows will use the same key for erasing characters:

% xmodmap -e ''keysym BackSpace = Delete"
% echo "XTerm*ttyModes: erase "1" I xrdb -merge

Some keyboards do not automatically generate less than and greater than characters when the
comma and period keys are shifted. This can be remedied with xmodmap by resetting the
bindings for the comma and period with the following scripts:

!
! make shift-, be < and shift-. be >
!
keysym comma = comma less
keysym period = period greater

One of the more irritating differences between keyboards is the location of the Control and Shift

Hewlett-Packard Company -2- Ju128, 1989

XMODMAP(l) XMODMAP(l)
Series 300 and 800 Only

Lock keys. A common use of xmodmap is to swap these two keys as follows:

! Swap Caps Lock and Control L
! - -

remove Lock = Caps Lock
remove Control = cOntrol L
keysym Control L = Caps -Lock
keysym Caps LOck = Control L
add Lock = Caps Lock -
add Control = cOntrol L

The keycode command is useful for assigning the same keysym to multiple keycodes. Although
unportable, it also makes it possible to write scripts that can reset the keyboard to a known state.
The following script sets the backspace key to generate Delete (as shown above), flushes all
existing caps lock bindings, makes the CapsLock key be a control key, make F5 generate Escape,
and makes Break/Reset be a shift lock.

!
! On the HP, the following keycodes have key caps as listed:
!

!

101 Backspace
55 Caps
14 Ctrl
15 Break/Reset
86 Stop
89 F5

keycode 101 = Delete
keycode 55 = Control R
clear Lock -
add Control:: Control R
keycode 89 = Escape -
keycode 15 = Caps Lock
add Lock = Caps_Lock

ENVIRONMENT
DISPlAY

to get default host and display number.

SEE ALSO
X(l)

NOTES
Every time a keycode expression is evaluated, the server generates a MappingNotify event on every
client. This can cause some thrashing. All of the changes should be batched together and done at
once. Clients that receive keyboard input and ignore MappingNotify events will not notice any
changes made to keyboard mappings.

Xmodmap should generate "add" and "remove" expressions automatically whenever a keycode that
is already bound to a modifier is changed.

There should be a way to have the remove expression accept keycodes as well as keysyms for those
times when you really mess up your mappings.

COPYRIGIIT

ORIGIN

Copyright 1988, Massachusetts Institute of Technology.
Copyright 1987 Sun Microsystems, Inc.
See X(J) for a full statement of rights and permissions.

MIT Distribution

Hewlett-Packard Company -3- Jul28,1989

XPR(1) XPR(l)
Series 300 and 800 Only

NAME
xpr - print an X window dump

SYNOPSIS
xpr [options] [filename]

DESCRIPTION
xpr takes as input a window dump file produced byxwd(l) and formats it for output on the HP
LaserJet (or other peL printers), HP PaintJet, LN03, lA100, PostScript printers, or IBM PP3812
page printer. If no filename argument is given, the standard input is used. By default, xpr prints
the largest possible representation of the window on the output page. Options allow the user to
add headers and trailers, specify margins, adjust the scale and orientation, and append multiple
window dumps to a single output file. Output is to standard output unless -output is specified.

Command Options

-scale scale
Affects the size of the window on the page. The HP, LN03 and PostScript printers are
able to translate each bit in a window pixel map into a grid of a specified size. For
example each bit might translate into a 3x3 grid. This would be specified by -scale 3. By
default a window is printed with the largest scale that will fit onto the page for the
specified orientation.

-density dpi
Indicates what dot-per-inch density should be used by the printer.

-height inches
Specifies the maximum height of the page.

-width inches
Specifies the maximum width of the page.

-left inches
Specifies the left margin in inches. Fractions are allowed. By default the window is
centered in the page.

-top inches
Specifies the top margin for the picture in inches. Fractions are allowed.

-header string
Specifies a header string to be printed above the window.

-trailer string
Specifies a trailer string to be printed below the window.

-landscape
Forces the window to printed in landscape mode. By default a window is printed such
that its longest side follows the long side of the paper.

-portrait
Forces the window to be printed in portrait mode. By default a window is printed such
that its longest side follows the long side of the paper.

-rv Forces the window to be printed in reverse video.

-compact
Uses simple run-length encoding for compact representation of windows with lots of
white pixels.

-output filename
Specifies an output file name. If this option is not specified, standard output is used.

-append filename
Specifies a filename previously produced by xpr to which the window is to be appended.

-noff When specified in conjunction with -append, the window will appear on the same page as
the previous window.

Hewlett-Packard Company - 1- Ju128, 1989

XPR(I) XPR(l)
Series 300 and 800 Only

-split n This option allows the user to split a window onto several pages. This might be necessary
for very large windows that would otherwise cause the printer to overload and print the
page in an obscure manner.

-device dev
Specifies the device on which the file will be printed. Currently xpr understands the
following devs:

Ijet HP LaserJet series and other monochrome PCL devices such as ThinkJet,

pjet
pjetxl
ln03
lal00
ps
pp

QuietJet, RuggedWriter, HP2560 series, and HP2930 series printers
HP PaintJet (color mode)
HP HP PaintJet XL Color Graphics Printer (color mode).
DECLN03
DECLA100
PostScript printers
IBMPP3812

The default device is !jet. -device Iw (LaserWriter) is equivalent to -device ps and is
provided only for backwards compatibility.

-cutoff level
Changes the intensity level where colors are mapped to either black or white for
monochrome output on a LaserJet printer. The level is expressed as percentage of full
brightness. Fractions are allowed.

-noposition
This option causes header, trailer, and image positioning command generation to be
bypassed for LaserJet, PaintJet and PaintJet XL printers.

-gamma correction
This changes the intensity of the colors printed by PaintJet XL printer. The correction is a
floating point value in the range 0.00 to 3.00. Consult the operator's manual to determine
the correct value for the specific printer.

-render algorithm
This allows PaintJet XL printer to render the image with the best quality versus
performance tradeoff. Consult the operator's manual to determine which algorithms are
available.

-slide This option allows overhead transparencies to be printed using. the PaintJet and PaintJet
XL printers.

LIMITATIONS
The current version of xpr can generally print out on the LN03 most X windows that are not larger
than two-thirds of the screen. For example, it will be able to print out a large Emacs window, but
it will usually fail when trying to print out the entire screen. The LN03 has memory limitations
that can cause it to print incorrectly very large or complex windows. The two most common errors
encountered are "band too complex" and "page memory exceeded." In the first case, a window
may have a particular six pixel row that contains too many changes (from black to white to black).
This will cause the printer to drop part of the line and possibly parts of the rest of the page. The
printer will flash the number'!' on its front panel when this problem occurs. A possible solution
to this problem is to increase the scale of the picture, or to split the picture onto two or more
pages. The second problem, "page memory exceeded," will occur if the picture contains too much
black, or if the picture contains complex half-tones such as the background color of a display.
When this problem occurs the printer will automatically split the picture into two or more pages.
It may flash the number '5' on its front panel. There is no easy solution to this problem. It will
probably be necessary to either cut and paste, or rework to application to produce a less complex
picture.

xpr provides some support for the LAl00. However, there are several limitations on its use: The
picture will always be printed in portrait mode, there is no scaling and the aspect ratio will be
slightly off.

Hewlett-Packard Company -2- Ju128,1989

XPR(1) XPR(1)
Series 300 and 800 Only

Support for PostScript output currently cannot handle the -append, .noft' or .split options.

The -compact option is only supported for PostScript output. It compresses white space but not
black space, so it is not useful for reverse-video windows.

HPPRINTERS
If no -density is specified on the command line 300 dots per inch will be assumed for /jet and 90
dots per inch for pjet. Allowable density values for a LaserJet printer are 300, 150, 100, and 75
dots per inch. Consult the operator's manual to determine densities supported by other printers.

If no ·scale is specified the image will be expanded to fit the printable page area.

The default printable page area is 8xl0.5 inches. Other paper sizes can be accomodated using the
.height and -width options.

Note that a 1024x768 image fits the default printable area when processed at 100 dpi with scale = 1,
the same image can also be printed using 300 dpi with scale =3 but will require considerably more
data be transfered to the printer.

xpr may be tailored for use with monochrome PCL printers other than the LaserJet. To print on a
ThinkJet (HP2225A) xpr could be invoked as:

xpr -density 96 -width 6.667 filename

or for black-and-white output to a PaintJet:

xpr -density 180 filename

The monochrome intensity of a pixel is computed as 0.30*R + 0.59*G + 0.11 *B. If a pixel's
computed intensity is less than the -cutoft' level it will print as white. This maps light-on-dark
display images to black-on-white hardcopy. The default cutoff intensity is 50% of full brightness.
Example: specifying -cutoft' 87.5 moves the white/black intensity point to 87.5% of full brightness.

A LaserJet printer must be configured with sufficient memory to handle the image. For a full
page at 300 dots per inch approximately 2MB of printer memory is required.

Color images are produced on the PaintJet at 90 dots per inch. The PaintJet is limited to sixteen
colors from its 330 color palette on each horizontal print line. xpr will issue a warning message if
more than sixteen colors are encountered on a line. xpr will program the PaintJet for the first
sixteen colors encountered on each line and use the nearest matching programmed value for other
colors present on the line.

Specifying the ·rv, reverse video, option for the PaintJet will cause black and white to be
interchanged on the output image. No other colors are changed.

Multiplane images must be recorded by xwd in ZPixmap format. Single plane (monochrome)
images may be in either XYPixmap or ZPixmap format.

Some PCL printers do not recognize image positioning commands. Output for these printers will
not be centered on the page and header and trailer strings may not appear where expected.

The -gamma and ·render options are supported only on the PaintJet XL printers.

The ·slide option is not supported for LaserJet printers.

The .split option is not supported for HP printers.

Hewlett-Packard Company ·3- Ju128, 1989

XPR(l)
Series 300 and 800 Only

COPYRIGHT

ORIGIN

Copyright 1988, Hewlett Packard Company.
Copyright 1988, Massachusetts Institute of Technology.
Copyright 1986, MalVin Solomon and the University of Wisconsin.
See XCI) for a full statement of rights and permissions.

MIT Distribution

SEE ALSO
xwd(1), xdpr(1), xwud(1), XCI)

Hewlett-Packard Company -4-

XPR(l)

Ju128,1989

XRDB(l) XRDB(l)
Series 300 and 800 Only

NAME
xrdb - X server resource database utility

sYNOPSIS
xrdb [-option ...] [filename]

DESCRIPTION
Xrdb is used to get or set the contents of the RESOURCE MANAGER property on the root
window of screen O. You would normally run this program from your X startup file.

The resource manager (used by the Xlib routine XGetDefault(3X) and the X Toolkit) uses the
RESOURCE_MANAGER property to get user preferences about color, fonts, and so on for
applications. Having this information in the server (where it is available to all Clients) instead of
on disk, solves the problem in previous versions of X that required you to maintain defaults files
on every machine that you might use. It also allows for dynamic changing of defaults without
editting files.

For compatibility, if there is no RESOURCE_MANAGER property defined (either because xrdb
was not run or if the property was removed), the resource manager will look for a file called
Xdefaults in your home directory.

Lines that begin with an exclamation mark (!) or (#) are ignored and maybe used as comments.
However this behavior is dependent on the preprocessor used. Cpp for instance, does not use '#'
as a comment.

The filename (or the standard input if - or no input file is given) is optionally passed through the
C preprocessor with the following symbols defined, based on the capabilities of the server being
used:

HOST = hostname
the hostname portion of the display to which you are connected.

WIDTH = num
the width of the screen in pixels.

HEIGHT=num
the height of the screen in pixels.

X RESOLUTION=num
the x resolution of the screen in pixels per meter.

Y RESOLUTION =num
- the y resolution of the screen in pixels per meter.

PLANES=num
the number of bit planes for the default visual.

BITS PER RGB=num
- the number of significant bits in an ROB color specification. This is the log base 2 of the

number of distinct shades of each primary that the hardware can generate. Note that it is
not related to the number of planes, which the log base 2 of the size of the colormap.

CLASS = visualclass
one of StaticGray, GrayScale, StaticColor, PseudoColor, TrueColor, DirectColor.

COLOR only defined if the default visual'S type is one of the color options.

OPTIONS
xrdb program accepts the following options:

-help This option (or any unsupported option) will cause a brief description of the allowable
options and parameters to be printed.

-display display
This option specifies the X server to be used; see X(1).

-epp filename
This option specifies the pathname of the C preprocessor program to be used. Although
xrdb was designed to use CPP, any program that acts as a filter and accepts the -D, -I,

Hewlett-Packard Company - 1 - Ju128,1989

XRDB(l) XRDB(l)

FILES

Series 300 and 800 Only

and -U options may be used.

-nocpp This option indicates thatxrdb should not run the input file through a preprocessor
before loading it into the RESOURCE_MANAGER property.

-symbols
This option indicates that the symbols that are defined for the preprocessor should be
printed onto the standard output. It can be used in conjunction with -query, but not with
the options that change the RESOURCE_MANAGER property.

-query This option indicates that the current contents of the RESOURCE_MANAGER
property should be printed onto the standard output. Note that since preprocessor
commands in the input resource file are part of the input file, not part of the property,
they won't appear in the output from this option. The -edit option can be used to merge
the contents of the property back into the input resource file without damaging
preprocessor commands.

-load This option indicates that the input should be loaded as the new value of the
RESOURCE_MANAGER property, replacing whatever what there (i.e. the old
contents are removed). This is the default action.

-merge This option indicates that the input should be merged with, instead of replacing, the
current contents of the RESOURCE MANAGER property. Since xrdb can read the
standard input, this option can be used to the change the contents of the
RESOURCE_MANAGER property directly from a terminal or from a shell script.

-remove This option indicates that the RESOURCE MANAGER property should be removed
from its window. -

-edit filename
This option indicates that the contents of the RESOURCE MANAGER property
should be edited into the given file, replacing any values already listed there. This allows
you to put changes that you have made to your defaults back into your resource file,
preserving any comments or preprocessor lines.

-backup string
This option specifies a suffix to be appended to the filename used with -edit to generate
a backup file.

-Dname[=value]
This option is passed through to the preprocessor and is used to define symbols for use
with conditionals such as #ifdef.

-Uname This option is passed through to the preprocessor and is used to remove any definitions
of this symbol.

-Idirectory
This option is passed through to the preprocessor and is used to specify a directory to
search for files that are referenced with #include.

Generalizes -/Xdefaults files.

ENVIRONMENT
DISPlAY

to figure out which display to use.

NOTES
The default for no arguments should be to query, not to ovelWrite, so that it is consistent with
other programs.

COPYRIGHT
Copyright 1988, Digital Equipment Corporation.

ORIGIN
MIT Distribution

Hewlett-Packard Company -2- Ju128,1989

XRDB(l) XRDB(l)
Series 300 and 800 Only

SEE ALSO
X(I), XGetDefault(3X), Xlib Resource Manager documentation

Hewlett-Packard Company -3- Ju128,1989

XREFRESH(l)
Series 300 and 800 Only

NAME
xrefresh - refresh all or part of an X screen

SYNOPSIS
xrefresh [options]

DESCRIPTION

XREFRESH(l)

xrefresh is a simple X program that causes all or part of your screen to be repainted. xrefresh maps
a window on top of the desired area of the screen and then immediately unmaps it, causing refresh
events to be sent to all applications. By default, a window with no background is used, causing all
applications to repaint "smoothly." However, the various options can be used to indicate that a
solid background (of any color) or the root window background should be used instead.

OPTIONS
-white

-black

Use a white background. The screen just appears to flash quickly, and then repaint.

Use a black background (in effect, turning off all of the electron guns to the tube).
This can be somewhat disorienting as everything goes black for a moment.

-solid color
Use a solid background of the specified color.

-root Use the root window background.

-none This is the default. All of the windows simply repaint.

-geometry geometry
Specifies the portion of the screen to be repainted; see X(J).

-display display
This argument allows you to specify the setver and screen to refresh; see X(J).

X DEFAULTS
The xrefresh program uses the routine XGetDefault(3X) to read defaults, so its resource names are
all capitalized.

Black Uses black for the window background. Default is False.

White

Solid

Uses white for the window background. Default is False.

Uses the given color for the window background.

None Maps an invisible window to the screen. Default is True.

Root Uses the root window background for the window baCkground. Default is False.

Geometry
Determines the area to refresh.

ENVIRONMENT
DISPlAY

- To get default host and display number.

NOTES
It should have just one default type for the background.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(J) for a full statement of rights and permissions.

ORIGIN
MIT Distribution

SEE ALSO
X(l)

Hewlett-Packard Company -1- Ju128, 1989

XSEETIlRU(1) XSEETIlRU(l)
Series 300 and 800 Only

NAME
xseethru - X Window System, opens a transparent window into the HP 98550A, HP 98720A or
HP 98730A Graphics Display Systems overlay plane.

SYNOPSIS
xseethru [options]

DESCRIPTION
xseethIU opens a transparent window into the HP 98550A, HP 98720A or HP 98730A Graphics
Display System overlay plane. It's used typically to view Starbase graphics in the image planes
while running X in the overlay planes.

OPTIONS
-geometry geometry

The transparent window is created with the specified size according to the geometry
specification. See X(1) for details.

-display display
Specified the sever to use; see X(1) for details.

ENVIRONMENT
DISPLAY

To get the default host and display number.

HARDWARE DEPENDENCIES
Only one display: 0, is supported on the HP 9000 Series 300.
xseethIU is only useful on the HP 98550A, HP98720A or HP 98730A
Graphics Display System.

ORIGIN
Hewlett-Packard Company

SEE ALSO
XCI)

Hewlett-Packard Company - 1- Jul28,1989

XSERVER(l) XSERVER(1)
Series 300 and 800 Only

NAME
x - X Window System setver

SYNOPSIS
X :displaynumber [-option] ttyname

DESCRIPTION
X is the window system setver. It is started from the xinit(l) program, which is called by xllstart.
The displaynumber argument is used by clients in their DISPLAY environment variables to
indicate which setver to contact (large machines may have several displays attached). This
number can be any number, but there can't be more than 4 of them. If no number is specified 0 is
used. This number is also used in determining the names of various startup files. The ttyname
argument is passed in by init and isn't used.

The executable that is invoked when X is run is actually one of a collection of programs that
depend on the hardware that is installed on the machine. Any additional features are described in
the documentation for that setver.

The Hewlett-Packard setver has support for the following protocols:

TCP/IP
The setver listens on port htons(6000 + N), where N is the display number.

Local IPC Mechanism
The file name for the socket is /usr/spool/sockets/Xll/* where "*" is the display
number.

When the selVer starts up, it takes over the display. If you are running on a workstation whose
console is the display, you cannot log into the console while the setver is running.

OPTIONS
The following options can be given on the command line to any X selVer, usually when it is started
by init(lM).

-a number
sets pointer acceleration (Le. the ratio of how much is reported to how much the user
actually moved the pointer).

-c turns off key-click.

cvolume
sets key-click volume (allowable range: 0-100). Default is 50.

-fvolume
sets feep (bell) volume (allowable range: 0-100). Default is 50.

-logo turns on the X Window System logo display in the screen-saver. There is currently no
way to change this from a client. Default is -logo. This must be used in conjuction with
-v.

nologo turns off the X Window System logo display in the screen-saver. There is currently no
way to change this from a client.

-pminutes
sets screen-saver pattern cycle time in minutes. Default is 10 minutes.

-r turns off auto-repeat.

r turns on auto-repeat.

-sminutes
sets screen-saver timeout time in minutes. Default is 10 minutes.

-tnumbers
sets pointer acceleration threshold in pixels (i.e. after how many pixels pointer
acceleration should take effect).

-to seconds
sets connection timeout in seconds. Default is 60 seconds.

Hewlett-Packard Company -1- Ju128,1989

XSERVER(l) XSERVER(l)
Series 300 and 800 Only

v sets video-on screen-saver preference.

-v sets video-off screen-saver preference

-eo filename
sets name of RGB color database

-help prints a usage message

-fp fontPath
sets the search path for fonts

-fe eursorFont
sets default cursor font

-fufont sets the default font

RUNNING FROM INIT
To run X from init, it is necessary to modify /etc/inittah and /ete/gettydefs. Detailed information
on these files may be obtained from the inittah(4) and gettydefs(4) man pages.

To run X from init on display 0, with a login xtenn running on /dev/ttypf, in init state 3, the
following line must be added to /etc/inittah:

XO:3:respawn:env PATII = /bin:/usr/bin/Xll:/usr/bin xinit -L ttyqf -- :0

To run X with a login hptenn, the following should be used instead:

XO:3:respawn:envPATII=/bin:/usr/bin/Xll:/usr/bin xinit hpterm = +l+l-n login -L ttyqf-­
:0

In addition, the following line must be added to /etc/gettydefs (this should be a single line):

Xwindow# B9600 HUPCL PARENB CS7 # B9600 SANE PARENB CS7 ISTRlP IXANY
TAB3 #X login: #Xwindow

There should not be a getty running against the display for states in which X is run from xinit.

SECURI'lY
X uses an access control list for deciding whether or not to accept a connection from a given client.
This list initially consists of the machine on which the server is running, and any hosts listed in the
file /ete/X*.hosts (where * is the display number). This file should contain one line per host
name, with no white space.

The user can manipulate a dynamic form of this list in the server using the xhost(1) program from
the same machine as the server.

Unlike some window systems, X does not have any notion of window operation permissions or
place any restrictions on what a client can do; if a program can connect to a display, it has full run
of the screen.

SIGNALS
X will catch the SIGHUP signal sent by init(1M) after the initial process (usually the login
terminal window) started on the display terminates. This signal causes all connections to be
closed (thereby "disowning" the terminal), all resources to be freed, and all defaults restored.

DIAGNOSTICS

FILES

Too numerous to list them all. If run from init(lM), errors are logged in the file
/usr/adm/X*msgs,

/etc/inittab

/etc/gettydefs

/etc/X* .hosts

/usr/lib/Xll/fonts

/usr/lib/Xll/rgb.txt

/usr/lib/X11/rgb.pag

Script for the init process

Speed and terminal settings used by getty

Initial access control list

Font directory

Color da tabase

Color database

Hewlett-Packard Company -2- Ju128,1989

XSERVER(1) XSERVER(l)

NOTES

/usr/lib/X11/rgb.dir

/usr/spool/sockets/X11/*

/usr/adm/X*msgs

/usr/lib/Xll/X*devices

/usr /lib /Xll/X*screens

/usr/lib /X11/X*pointerkeys

Series 300 and 800 Only

Color database

IPC mechanism socket

Error log file

Input devices used by the server

Screens used by the server

Keyboard pointer device file

The option syntax is inconsistent with itself and xset(l).

The acceleration option should take a numerator and a denominator like the protocol.

If X dies before its clients, new clients won't be able to connect until all existing connections have
their TCP TIME_WAIT timers expire.

The color database is missing a large number of colors. However, there doesn't seem to be a
better one available that can generate RGB values.

COPYRIGHT

ORIGIN

Copyright 1988, Massachusetts Institute of Technology.
See X(l) for a full statement of rights and permissions.

MIT Distribution

SEE ALSO
bdftosnfbitmap(1), getty(lM), gettydefs(4), gwindstop(l), hpterm(l), init(lM), inittab(4), rgb(l),
uwm(l), xllstart(l), xclock(l), xfc(l), xfd(l), xhost(l), xinit(l), xinitcolormap(l), xload(l),
xmodmap(l), xrefresh(l), xseethru(l), xset(1), xsetroot(l), xterm(l), xwcreate(l), xwd(l),
xwdestroy(l), xwininfo(l), xwud(l), Programming With Xlib, Programming With the Xt Intrinsics

Hewlett-Packard Company -3- Ju128,1989

XSET(l) XSET(l)
Series 300 and 800 Only

NAME
xset - user preference utility for X

SYNOPSIS
xset [options]

DESCRIPTION
This program is used to set various user preference options of the display.

OPTIONS
-display display

This option specifies the server to use; see XCI).

b the b option controls bell volume, pitch and duration. This option accepts up to three
numerical parameters, a preceding dash(-), or a 'on/oW flag. If no parameters are given,
or the 'on' flag is used, the system defaults will be used. If the dash or 'off' are given, the
bell will be turned off. If only one numerical parameter is given, the bell volume will be
set to that value, as a percentage of its maximum. Likewise, the second numerical
parameter specifies the bell pitch, in hertz, and the third numerical parameter specifies
the duration in milliseconds. Note that not all hardware can vary the bell characteristics.
The X server will set the characteristics of the bell as closely as it can to the user's
specifications.

c The c option controls key click. This option can take an optional value, a preceding
dash(-), or an 'on/oW flag. If no parameter or the 'on' flag is given, the system defaults
will be used. If the dash or 'off' flag is used, keyclick will be disabled. If a value from 0 to
100 is given, it is used to indicate volume, as a percentage of the maximum. The X server
will set the volume to the nearest value that the hardware can support.

fp= path, ...
The fp= sets the font path to the directories given in the path argument. The directories
are interpreted by the server, not by the client, and are server-dependent. Directories
that do not contain font databases created by mkfontdir will be ignored by the server.

fp default

fprehash

The default argument causes the font path to be reset to the server's default.

The rehash argument causes the server to reread the font databases in the current font
path. This is generally only used when adding new fonts to a font directory (after
running mkfontdir to recreate the font database).

-fp or fp- path [,path ...]
The -fp and fpo options remove elements from the current font path. They must be
followed by a comma-separated list of directories.

+fp or fp+ path[,path ...]
This +fp and fp+ options prepend and append elements to the current font path,
respectively. They must be followed by a comma-separated list of directories.

led The led option controls the keyboard LEDs. This controls the turning on or off of one
or all of the LEDs. It accepts an optional integer, a preceding dash(-) or an 'on/off' flag.
If no parameter or the 'on' flag is given, all LEDs are turned on. If a preceding dash or
the flag 'off' is given, all LEDs are turned off. If a value between 1 and 32 is given, that
LED will be turned on or off depending on the existance of a preceding dash. A
common LED which can be controlled is the "Caps Lock" LED. ")(Set led 3" would tum
led #3 on. "xset -led 3" would tum it off. The particular LED values may refer to
different LEOs on different hardware.

rn [acceleration [threshold]]
The rn option controls the mouse parameters. The parameters for the mouse are
'acceleration' and 'threshold'. The mouse, or whatever pointer the machine is connected
to, will go 'acceleration' times as fast when it travels more than 'threshold' pixels in a
short time. This way, the mouse can be used for precise alignment when it is moved
slowly, yet it can be set to travel across the screen in a flick of the wrist when desired.

Hewlett-Packard Company -1- Ju128,1989

XSET(l) XSET(l)
Series 300 and 800 Only

One or both parameters for the m option can be omitted, but if only one is given, it will
be interpreted as the acceleration. If no parameters or the flag 'default' is used, the
system defaults will be set.

p pixel color
The p option controls pixel color values. The parameters are the color map entry
number in decimal, and a color specification. The root background colors may be
changed on some setvers by altering the entries for BlackPixel and WhitePixel.
Although these are often 0 and 1, they need not be. Also, a server may choose to
allocate those colors privately, in which case an error will be generated. The map entry
must be allocated read/write, or an error will result.

r The r option controls the autorepeat. If a preceding dash or the 'off' flag is used,
autorepeat will be disabled. If no parameters or the 'on' flag is used, autorepeat will be
enabled.

s The s option lets you set the screen saver parameters. This option accepts up to two
numerical parameters, a 'blank/noblank' flag, an 'expose/noexpose' flag, an 'on/off' flag,
or the 'default' flag. If no parameters or the 'default' flag is used, the system will be set
to its default screen saver characteristics. The 'on/off' flags simply turn the screen saver
functions on or off. The 'blank' flag sets the preference to blank the video (if the
hardware can do so) rather than display a background pattern, while 'noblank' sets the
preference to display a pattern rather than blank the video. The 'expose' flag sets the
preference to allow window exposures (the server can freely discard window contents),
while 'noexpose' sets the preference to disable screen saver unless the server can
regenerate the screens without causing exposure events. The length and period
parameters for the screen saver function determines how long the setver must be inactive
for screen saving to activate, and the period to change the background pattern to avoid
burn in. The arguments are specified in seconds. If only one numerical parameter is
given, it will be used for the length.

q The q option gives you information on the current settings.

These settings will be reset to default values when you log out.

ENVIRONMENT
DISPlAY - To get default host and display number.

HARDWARE DEPENDENCIES
Note that not all X implementations are guaranteed to honor all of these options.

series 800
There is no hardware support for changing bell pitch or duration.

SEE ALSO
X(l), Xsetver(l), xmodmap(1), xrdb(l), xsetroot(l)

COPYRIGHT

ORIGIN

Copyright 1988, Massachusetts Institute of Technology.
See XCi) for a full statement of rights and permissions.

MIT Distribution

Hewlett-Packard Company -2- lui 28, 1989

XSETROOT(l) XSETROOT(l)
Series 300 and 800 Only

NAME
xsetroot - root window parameter setting utility for X

SYNOPSIS
xsetroot [options]

DESCRIPTION
The setroot program allows you to tailor the appearance of the background ("root") window on a
workstation display running X. Normally, you experiment with xsetroot until you find a
personalized look that you like, then put the xsetroot command that produces it into your X
startup file. If no options are specified, or if -de! is specified, the window is reset to its default
state. the -de! option can be specified along with other options and only the non-specified
characteristics will be reset to the default state.

Only one of the background color/tiling changing options (-solid, -gray, -grey, -bitmap, and -mod)
may be specified at a time.

OPTIONS
The various options are as follows:

-help Print a usage message and exit.

-def Reset unspecified attributes to the default values. (Restores the background to the
familiar gray mesh and the cursor to the hollow x shape.)

-cursor cursorfile maskfile
This lets you change the pointer cursor to whatever you want when the pointer cursor is
outside of any window. Cursor and mask files are bitmaps (little pictures), and can be
created with the bitmap(1) program. You probably want the mask file to be all black until
you get used to the way masks work.

-bitmap filename
Use the bitmap specified in the file to set the window pattern. You can create your own
bitmap files using the bitmap(1) program. The entire background will be made up of
repeated "tiles" of the bitmap.

-modxy
This is used to create a plaid-like grid pattern on your screen. x and yare integers
ranging from 1 to 16. Zero and negative numbers are taken as 1.

-gray Make the entire background gray. (Easier on the eyes.)

-grey Make the entire background grey.

-fgcolor
Use "color" as the foreground color when setting attributes. Options that use/are
affected by this parameter are -bitmap, -cursor, -mod, -gray and -grey.

-bg color
Use "color" as the background color when setting attributes. Options that use/are
affected by this parameter are -bitmap, -cursor, -mod, -gray and -grey.

-rv This exchanges the foreground and background colors. Normally the foreground color is
black and the background color is white.

-solid color
Set the window color to "color".

-name string
Set the name of the root window to "string". There is no default value. Usually a name is
assigned to a window so that the window manager can use a text representation when the
window is iconified. This option is unused since you can't iconify the background.

-display display
Specifies the server to connect to; see X(J).

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(J) for a full statement of rights and permissions.

Hewlett-Packard Company -1- Ju128,1989

XSETROOT(l) XSETROOT(l)
Series 300 and 800 Only

ORIGIN
MIT Distribution

SEE ALSO
X(l), xset(l)

Hewlett-Packard Company - 2- Ju128, 1989

XTERM(l) XTERM(l)
Series 300 and 800 Only

NAME
xterm - terminal emulator for X

SYNOPSIS
xtenn [-toolkitoption ...] [-option ...]

DESCRIPTION
The xtenn program is a terminal emulator for the X Window System. It provides DEC Vf102 and
Tektronix 4014 compatible terminals for programs that can't use the window system directly. If the
underlying operating system supports terminal resizing capabilities (for example, the SIGWINCH
signal in systems derived from 4.3bsd), xterm will use the facilities to notify programs running in
the window whenever it is resized.

The Vf102 and Tektronix 4014 terminals each have their own window so that you can edit text in
one and look at graphics in the other at the same time. To maintain the correct aspect ratio
(height/width), Tektronix graphics will be restricted to the largest box with a 4014's aspect ratio
that will fit in the window. This box is located in the upper left area of the window.

Although both windows may be displayed at the same time, one of them is considered the "active"
window for receiving keyboard input and terminal output. This is the window that contains the
text cursor and whose border highlights whenever the pointer is in either window. The active
window can be choosen through escape sequences, the "Modes" menu in the Vf102 window, and
the "Tektronix" menu in the 4014 window.

OPTIONS
The xtenn terminal emulator accepts all of the standard X Toolkit command line options along
with the additional options listed below (if the option begins with a '+' instead of a '-', the option
is restored to its default value):

-132 Normally, the VT102 DECCOLM escape sequence that switches between 80 and 132
column mode is ignored. This option causes the DECCOLM escape sequence to be
recognized, and the xtenn window will resize appropriately.

-ah This option indicates thatxterm should always highlight the text cursor and borders. By
default, xterm will display a hollow text cursor whenever the focus is lost or the pointer
leaves the window.

+ ah This option indicates that xtenn should do text cursor highlighting.

-bnumber
This option specifies the size of the inner border (the distance between the outer edge of
the characters and the window border) in pixels. The default is 2.

-cc characterclassrange:value[, •••]
This sets classes indicated by the given ranges for using in selecting by words. See the
section specifying character classes.

-cr color This option specifies the color to use for text cursor. The default is to use the same
foreground 'color that is used for text.

-cu This option indicates thatxtenn should work around a bug in the cur.ses(3x) cursor
motion package that causes the more (1) program to display lines that are exactly the
width of the window and are followed by line beginning with a tab to be displayed
incorrectly (the leading tabs are not displayed).

+cu This option indicates that thatxtenn should not work around the cur.ses(3x) bug
mentioned above.

-e program [arguments ...]
This option specifies the program (and its command line arguments) to be run in the
xtenn window. It also sets the window title and icon name to be the base name of the
program being executed if neither -T nor -n are given on the command line. This must
be the last option on the command line.

-tb font This option specifies a font to be used when displaying bold text. This font must be the
same height and width as the normal font. If only one of the normal or bold fonts is
specified, it will be used as the normal font and the bold font will be produced by

Hewlett-Packard Company - 1 - Ju128,1989

XTERM(l) XTERM(1)
Series 300 and 800 Only

overstriking this font. The default bold font is ''vtbold.'' The directory containing the
font is detennined by xset -fp.

-j This option indicates that xtenn should do jump scrolling. Nonnally, text is scrolled one
line at a time; this option allows xtenn to move multiple lines at a time so that it doesn't
fall as far behind. Its use is strongly recommended since it make xtenn much faster when
scanning through large am.ounts of text. The VI'lOO escape sequences for enabling and
disabling smooth scroll as well as the "Modes" menu can be used to turn this feature on
or off.

+j This option indicates thatxtenn should not do jump scrolling.

-I This option indicates that xtenn should send all tenninal output to a log file as well as to
the screen. This option can be enabled or disabled using the "xtenn XU" menu.

+ I This option indicates that xtenn should not do logging.

-If filename
This option specifies the name of the file to which the output log described above is
written. If file begins with a pipe symbol (I), the rest of the string is assumed to be a
command to be used as the endpoint of a pipe. The default filename is
"XtennLog.xXXXX" (where XXXXX is the process id of xtenn) and is created in the
directory from which xtenn was started (or the user's home directory in the case of a
login window.

-Is This option indicates that shell that is started in the xtenn window be a login shell (i.e.
the first character of argv(O] will be a dash, indicating to the shell that it should read the
user's .login or .profile).

+ Is This option indicates that the shell that is started should not be a login shell (i.e. it will
be nonnal "subshell").

-mb This option indicates that xtenn should ring a margin bell when the user types near the
right end of a line. This option ca.1 be turned on and off from the "Modes" menu.

+rnb This option indicates that margin bell should not be rung.

-rns color
This option specifies the color to be used for the pointer cursor. The default is to use
the foreground color.

-nbnumber
This option specifies the number of characters from the right end of a line at which the
margin bell, if enabled, will ring. The default is 10.

-rw This option indicates that reverse-wraparound should be allowed. This allows the cursor
to back up from the leftmost column of one line to the rightmost column of the previous
line. This is very useful for editing long shell command lines and is encouraged. This
option can be turned on and off from the "Modes" menu.

+rw This option indicates that reverse-wraparound should not be allowed.

-s This option indicates that xtenn may scroll asynchronously, meaning that the screen does
not have to be kept completely up to date while scrolling. This allows xtenn to run faster
when network latencies are very high and is typically useful when running across a very
large internet or many gateways.

+s This option indicates thatxtenn should scroll synchronously.

-sb This option indicates that some number of lines that are scrolled off the top of the
window should be saved and that a scrollbar should be displayed so that those lines can
be viewed. This option may be turned on and off from the "Modes" menu.

+ sb This option indicates that a scroll bar should not be displayed.

-sf This option indicates that Sun Function Key escape codes should be generated for
function keys.

Hewlett-Packard Company -2- Jul28,1989

XTERM(l) XTERM(l)
Series 300 and 800 Only

+ sf This option indicates that the standard escape codes should be generated for function
keys.

-si This option indicates that output to a window should not automatically reposition the
screen to the bottom of the scrolling region. This option can be turned on and off from
the "Modes" menu.

+ si This option indicates that output to a window should cause it to scroll to the bottom.

-sk This option indicates that pressing a keywhile using the scrollbar to review previous
lines of text should cause the window to be repositioned automatically in the normal
postion at the bottom of the scroll region.

+sk This option indicates that pressing a keywhile using the scrollbar should not cause the
window to be repositioned.

-slnumber
This option specifies the number of lines to save that have been scrolled off the top of
the screen. The default is 64.

-t This option indicates thatxtenn should start in Tektronix mode, rather than in Vf102
mode. Switching between the two windows is done using the "Modes" menus.

+t This option indicates that xtenn should start in Vf102 mode.

-vb This option indicates that a visual bell is prefered over an audible one. Instead of
ringing the terminal bell whenever a Control-G is received, the window will be flashed.

+vb This option indicates that a visual bell should not be used.

-C This option indicates that this window should be receive console output. This is not
supported on all systems.

-L This option indicates thatxtenn was started by init. In this mode, xtenn does not try to
allocate a new pseudoterminal as init has already done so. In addition, the system
program getty is run instead of the user's shell. This option should never be used by
users when starting terminal windows.

-Seen This option specifies the laSt two letters of the name of a pseudoterminal to use in slave
mode. This allows xtenn to be used as an input and output channel for an existing
program and is sometimes used in specialized applications.

The following command line arguments are provided for compatibility with older versions. They
may not be supported in the next release as the X Toolkit provides standard options that
accomplish the same task.

%geom This option specifies the prefered size and position of the Tektronix window. It is
shorthand for specifying the "*tekGeometry" resource.

#geom This option specifies the prefered position of the icon window. It is shorthand for
specifying the "*ieonGeometry" resource.

-T string This option specifies the title for xtenn's windows. It is equivalent to -title.

-mtring This option specifies the icon name for xterm's windows. It is shorthand for specifying
the "*ieonName" resource.

-r This option indicates that reverse video should be simulated by swapping the foreground
and background colors. It is equivalent to -reversevideo or -rv.

-wnumber
This option specifies the width in pixels of the border surrounding the window. It is
equivalent to -bordelWidth or -bw.

The following standard X Toolkit command line arguments are commonly used with xtenn:

-bg color
This option specifies the color to use for the background of the window. The default is
"white."

Hewlett-Packard Company -3- Jul28,1989

XTERM(l)

-bd color

XTERM(l)
Series 300 and 800 Only

This option specifies the color to use for the border of the window. The default is
"black."

-bwnumber
This option specifies the width in pixels of the border surrounding the window.

-fg color This option specifies the color to use for displaying text. The default is "black".

-fn/ont This option specifies the font to be used for displaying normal text. The default is
''vtsingie.'' The directory containing the font is determined by xset -fp.

-name name
This option specifies the application name under which resource are to be obtained,
rather than the default executable file name.

-rv This option indicates that reverse video should be simulated by swapping the foreground
and background colors.

-geometry geometry
This option specifies the prefered size and position of the VT102 window; see X(1);

-display display
This option specifies the X server to contact; see X(l).

-XI'Ol resourcestring
This option specifies a resource string to be used. This is especially useful for setting
resources that do not have separate command line options.

-iconic This option indicates that xtenn should ask the window manager to start it as an icon
rather than as the normal window.

X DEFAULTS
The program understands all of the core X Toolkit resource names and classes as well as:

name (class Name)
Specifies the name of this instance of the program. The default is "xterm."

iconGeometry (class IconGeometry)
Specifies the prefered size and position of the application when iconified. It is not
necessarily obeyed by all window managers.

title (class Title)
Specifies a string that may be used by the window manager when displaying this
application.

utmpInhlbit (class UtmpInhlhit)
Specifies whether or notxtenn should try to record the user's terminal in JetcJutmp.

sunFunctionKeys (class SunFunctionKeys)
Specifies whether or not Sun Function Key escape codes should be generated for
function keys instead of standard escape sequences.

The following resources are specified as part of the "vt100" widget (class "VT100"):

alwaysHighlight (class AlwaysHighlight)
Specifies whether or not xtenn should always display a highlighted text cursor. By
default, a hollow text cursor is displayed whenever the pointer moves out of the window
or the window loses the input focus.

font (class Font)
Specifies the name of the normal font. The default is "vtsingie."

boldFont (class Font)
Specifies the name of the bold font. The default is ''vtbold.''

c132 (class C132)
Specifies whether or not the VT102 DECCOLM escape sequence should be honored.
The default is "false."

Hewlett-Packard Company -4- Jul 28, 1989

XTERM(l) XTERM(1)
Series 300 and 800 Only

charClass (class CharClass)
Specifies comma-separated lists of character class bindings of the form [low-)high:value.
These are used in determining which sets of characters should be treated the same when
doing cut and paste. See the section on specifying character classes.

curses (class Curses)
Specifies whether or not the last column bug in cursor should be worked around. The
default is "false."

background (class Background)
Specifies the color to use for the background of the window. The default is ''white.''

foreground (class Foreground)
Specifies the color to use for displaying text in the window. Setting the class name
instead of the instance name is an easy way to have everything that would normally
appear in the "text" color change color. The default is "black."

cursorColor (class Foreground)
Specifies the color to use for the text cursor. The default is "black."

geometry (class Geometry)
Specifies the prefered size and position of the Vf102 window.

tekGeometry (class Geometry)
Specifies the prefered size and position of the Tektronix window.

intemalBorder (class BorderWidth)
Specifies the number of pixels between the characters and the window border. The
default is 2.

jumpScroll (class JumpScroll)
Specifies whether or not jump scroll should be used. The default is "false".

logFile (class Logfile)
Specifies the name of the file to which a terminal session is logged. The default is
"XtermLog.XXXXX" (where XXXXX is the process id of xterm).

logging (class Logging)
Specifies whether or not a terminal session should be logged. The default is "false."

logInhibit (class Loglnhibit)
Specifies whether or not terminal session logging should be inhibited. The default is
"false."

loginShell (class LoginShell)
Specifies whether or not the shell to be run in the window should be started as a login
shell. The default is "false."

marginBell (class MarginBell)
Specifies whether or not the bell should be run when the user types near the right
margin. The default is "false."

multiScroll (class MultiScroll)
Specifies whether or not asynchronous scrolling is allowed. The default is "false."

nMarginBell (class Column)
Specifies the number of characters from the right margin at which the margin bell should
be run, when enabled. '

pointerColor (class Foreground)
Specifies the color of the pointer. The default is "black."

pointerShape (class Cursor)
Specifies the name of the shape of the pointer. The default is "xterm."

reverseVideo (class ReverseVideo)
Specifies whether or not reverse video should be simulated. The default is "false."

Hewlett-Packard Company -5- Ju128,1989

XTERM(l) XTERM(l)
Series 300 and 800 Only

reverseWrap (class ReverseWrap)
Specifies whether or not reverse-wraparound should be enabled. The default is "false."

saveLines (class SaveLines)
Specifies the number of lines to save beyond the top of the screen when a scrollbar is
turned on. The default is 64.

scrollBar (class ScrollBar)
Specifies whether or not the scrollbar should be displayed. The default is "false."

scrollInput (class ScrollCond)
Specifies whether or not output to the terminal should automatically cause the scrollbar
to go to the bottom of the scrolling region. The default is "true."

scrollKey (class ScrollCond)
Specifies whether or not pressing a key should automatically cause the scrollbar to go to
the bottom of the scrolling region. The default is "false."

signalInhibit (class SignalInhibit)
Specifies whether or not the entries in the "xterm Xll" menu for sending signals to
xterm should be disallowed. The default is "false."

teklnhibit (class Teklnhibit)
Specifies whether or not Tektronix mode should be disallowed. The default is "false."

tekStartup (class TekStartup)
Specifies whether or notxterm should start up in Tektronix mode. The default is "false."

titelnhibit (class Titelnhibit)
Specifies whether or notxterm should remove remove ti or te termcap entries (used to
switch between alternate screens on startup of many screen-oriented programs) from the
TERMCAP string.

visualBell (class VisualBell)
Specifies whether or not a visible bell (i.e. flashing) should be used instead of an audible
bell when Control-G is received. The default is "false."

The following resources are specified as part of the "tek4014" widget (class "Tek4014"):

width (class Width)
Specifies the width of the Tektronix window in pixels.

height (class Height)
Specifies the height of the Tektronix window in pixels.

The following resources are specified as part of the "menu" widget:

menuBorder (class MenuBorder)
Specifies the size in pixels of the border surrounding menus. The default is 2.

menu Font (class Font)
Specifies the name of the font to use for displaying menu items.

menuPad (class MenuPad)
Specifies the number of pixels between menu items and the menu border. The default is
3.

The following resources are useful when specified for the Athena Scrollbar widget:

thickness (class Thickness)
Specifies the width in pixels of the scrollbar.

background (class Background)
Specifies the color to use for the background of the scrollbar.

EMUIATIONS
The Vfl02 emulation is fairly complete, but does not support the blinking character attribute nor

Hewlett-Packard Company -6- lui 28, 1989

XTERM(l) XTERM(l)
Series 300 and 800 Only

the double-wide and double-size character sets. Tenncap(5) entries that work with xtenn include
"xterm", ''vt102'', ''vt100'' and "ansi", andxtenn automatically searches the termcap file in this
order for these entries and then sets the "TERM" and the "TERM CAP" environment variables.

Many of the special xtenn features (like logging) may be modified under program control through
a set of escape sequences different from the standard Vf102 escape sequences.

The Tektronix 4014 emulation is also fairly good. Four different font sizes and five different lines
types are supported. The Tektronix text and graphics commands are recorded internally by xtenn
and may be written to a file by sending the COPY escape sequence (or through the Tektronix
menu; see below). The name of the file will be "COPYyy-MM-dd.hh:mm:ss", where yy, MM, dd,
hh, mm and ss are the year, month, day, hour, minute and second when the COPY was performed
(the file is created in the directory xtenn is started in, or the home directory for a login xterm).

POINTER USAGE
Once the Vf102 window is created, xtenn allows you to select text and copy it within the same or
other windows.

The selection functions are invoked when the pointer buttons are used with no modifiers, and
when they are used with the "shift" key.

Pointer button one (usually left) is used to save text into the cut buffer. Move the cursor to
beginning of the text, and then hold the button down while moving the cursor to the end of the
region and releasing the button. The selected text is highlighted and is saved in the global cut
buffer when the button is released. Double-clicking selects by words. Triple-clicking selects by
lines. Quadruple-clicking goes back to characters, etc. Multiple-click is determined by the time
from button up to button down, so you can change the selection unit in the middle of a selection.

Pointer button two (usually middle) 'types' (pastes) the text from the cut buffer, inserting it as
keyboard input.

Pointer button three (usually right) extends the current selection. (Without loss of generality, that
is you can swap "right" and "left" everywhere in the rest of this paragraph ...) If pressed while
closer to the right edge of the selection than the left, it extends/contracts the right edge of the
selection. If you contract the selection past the left edge of the selection, xtenn assumes you really
meant the left edge, restores the original selection, then extends/contracts the left edge of the
selection. Extension starts in the selection unit mode that the last selection or extension was
performed in; you can multiple-click to cycle through them.

By cutting and pasting pieces of text without trailing new lines, you can take text from several
places in different windows and form a command to the shell, for example, or take output from a
program and insert it into your favorite editor. Since the cut buffer is globally shared among
different applications, you should regard it as a 'file' whose contents you know. The terminal
emulator and other text programs should be treating it as if it were a text file, i.e. the text is
delimited by new lines.

The scroll region displays the position and amount of text currently showing in the window
(highlighted) relative to the amount of text actually saved. As more text is saved (up to the
maximum), the size of the highlighted area decreases.

Clicking button one with the pointer in the scroll region moves the adjacent line to the top of the
display window.

Clicking button three moves the top line of the display window down to the pointer position.

Clicking button two moves the display to a position in the saved text that corresponds to the
pointer's position in the scrollbar.

Unlike the Vf102 window, the Tektronix window does not allow the copying of text. It does allow
Tektronix GIN mode, and in this mode the cursor will change from an arrow to a cross. Pressing
any key will send that key and the current coordinate of the cross cursor. Pressing button one,
two, or three will return the letters '1', 'm', and 'r', respectively. If the 'shift' key is pressed when a
pointer buton is pressed, the corresponding upper case letter is sent. To distinguish a pointer
button from a key, the high bit of the character is set (but this is bit is normally stripped unless the
terminal mode is RAW; see tty(4) for details).

Hewlett-Packard Company -7- Ju128,1989

XTERM(l) XTERM(l)

MENUS

Series 300 and 800 Only

Xterm has three different menus, named xterm, Modes, and Tektronix. Each menu pops up under
the correct combinations of key and button presses. Most menus are divided into two section,
separated by a horizontal line. The top portion contains various modes that can be altered. A
check mark appears next to a mode that is currently active. Selecting one of these modes toggles
its state. The bottom portion of the menu are command entries; selecting one of these performs
the indicated function.

The xterm menu pops up when the "control" key and pointer button one are pressed in a window.
The modes section contains items that apply to both the Vfl02 and Tektronix windows. Notable
entries in the command section of the menu are the Continue, Suspend, Interrupt, Hangup,
Terminate and Kill which sends the SIGCONf, SIGTSTP, SIGINf, SIGHUP, SIGTERM and
SIGKILL signals, respectively, to the process group of the process running under xterm (usually
the shell). The Continue function is especially useful if the user has accidentally typed crRL-Z,
suspending the process.

The Modes menu sets various modes in the VTI02 emulation, and is popped up when the
"control" key and pointer button two are pressed in the VTI02 window. In the command section
of this menu, the soft reset entry will reset scroll regions. This can be convenient when some
program has left the scroll regions set incorrectly (often a problem when using VMS or TOPS-20).
The full reset entry will clear the screen, reset tabs to every eight columns, and reset the terminal
modes (such as wrap and smooth scroll) to there initial states just after xtenn has finish processing
the command line options. The Tektronix menu sets various modes in the Tektronix emulation,
and is popped up when the "control" key and pointer button two are pressed in the Tektronix
window. The current font size is checked in the modes section of the menu. The PAGE entry in
the command section clears the Tektronix window.

CHARACTER ClASSES
Clicking the middle mouse button twice in rapid succession will cause all characters of the same
class (e.g. letters, white space, punctuation) to be selected. Since different people have different
preferences for what should be selected (for example, should filenames be selected as a whole or
only the separate sub names), the default mapping can be overridden through the use of the
clarClass (class CharClass) resource.

This resource is simply a list of range:value pairs where the range is either a single number or
low-high in the range of 0 to 127, corresponding to the ASCII code for the character or characters
to be set. The value is arbitrary, although the default table uses the character number of the first
character occurring in the set.

The default table is:

Hewlett-Packard Company

static int charClass[l28] = {
/* NUL SOH STX ETX EOT ENQ ACK BEL *1

32, 1, 1, 1, 1, 1, 1, 1,
/* BS HT NL VI' NP CR SO SI *1

1, 32, 1, 1, 1, 1, 1, 1,
1* DLE DCl DC2 DC3 DC4 NAK SYN Ern *1

1, 1, 1, 1, 1, 1, 1, 1,
/* CAN EM SUB ESC FS GS RS US *1

1, 1, 1, 1, 1, 1, 1, 1,
/* SP ! " # $ % & '* I

32, 33, 34, 35, 36, 37, 38, 39,
/* () * + , - . 1*1

40, 41, 42, 43, 44, 45, 46, 47,
/* 0 1 2 3 4 5 6 7*1

48, 48, 48, 48, 48, 48, 48, 48,
/* 8 9 : ; < > ?*I

48, 48, 58, 59, 60, 61, 62, 63,
/* @ ABC D E F G *1

64, 48, 48, 48, 48, 48, 48, 48,
/* H I J K L M N 0 *1

-8- Jul28,1989

XTERM(l) XTERM(l)
Series 300 and 800 Only

48, 48, 48, 48,· 48, 48, 48, 48,
1* P Q R STU V W */

48, 48, 48, 48, 48, 48, 48, 48,
1* X Y Z [\]" */

48, 48, 48, 91, 92, 93, 94, 48,
1* ' abc d e f g*/

96, 48, 48, 48, 48, 48, 48, 48,
1* h i j kim n 0 */

48, 48, 48, 48, 48, 48, 48, 48,
/* p q r stu v w * /

48, 48, 48, 48, 48, 48, 48, 48,
1* x y z { I } - DEL * /

48, 48, 48,123,124,125, 126, 1};

For example, the string "33:48,37:48,4647:48,64:48" indicates that the exclamation mark, percent
sign, period, slash, and ampersand characters should be treated the same way as characters and
numbers. This is very useful for cutting and pasting electronic mailing addresses and filenames.

OTHER FEATURES
Xtenn automatically highlights the window border and text cursor when the pointer enters the
window (selected) and unhighlights them when the pointer leaves the window (unselected). If the
window is the focus window, then the window is highlighted no matter where the pointer is.

In VT102 mode, there are escape sequences to activate and deactivate an alternate screen buffer,
which is the same size as the display area of the window. When activated, the current screen is
saved and replace with the alternate screen. Saving of lines scrolled off the top of the window is
disabled until the normal screen is restored. The tenncap(5) entry for xtemt allows the visual
editor vi(1) to switch to the alternate screen for editing, and restore the screen on exit.

In either VT102 or Tektronix mode, there are escape sequences to change the name of the
windows and to specify a new log file name.

ENVIRONMENT

NOTES

Xtenn sets the environment variables "TERM" and "TERM CAP" properly for the size window
you have created. It also uses and sets the environment variable "DISPLAY" to specify which bit
map display terminal to use. The environment variable "WINDOWID" is set to the X window id
number of the xtenn window.

Xterm will hang forever if you try to paste too much text at one time. It is both producer and
consumer for the pty and can deadlock.

Variable-width fonts are not handled reasonably.

This program still needs to be rewritten. It should be split into very modular sections, with the
various emulators being completely separate widgets that don't know about each other. Ideally,
you'd like to be able to pick and choose emulator widgets and stick them into a single control
widget.

The focus is considered lost if some other client (e.g., the window manager) grabs the pointer; it is
difficult to do better without an addition to the protocol.

There needs to be a dialog box to allow entry of log file name and the COPY file name.

Many of the options are not resettable after xtenn starts.

This manual page is too long. There should be a separate users manual defining all of the non­
standard escape sequences.

All programs should be written to use X directly; then we could eliminate this program.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(J) for a full statement of rights and permissions.

Hewlett-Packard Company -9- Ju128, 1989

XTERM(l) XTERM(l)
Series 300 and 800 Only

ORIGIN
MIT Distribution

SEE ALSO
resize(1), X(1), pty(4), tty(4)

Hewlett-Packard Company -10 - Jul28,1989

XWCREATE(1) XWCREATE(l)
Series 300 and 800 Only

NAME
xwcreate - create a new X window

SYNOPSIS
xwcreate [options] name

DESCRIPTION
This command creates a new X window and assigns it the name name. This program will also
create a pty file of the same name as the window in the indicated directory. After the window has
been created, the pty file may be used to specify the window that an application should use when
utilizing a graphics library (e.g. Starbase or HP-GKS). A window created by xwcreate can be
destroyed by xwdestroy(I). Note: The window is actually created and maintained by the daemon
program, gwind. The xwcreate program requests the daemon to create the window. If gwind is not
running when xwcreate is executed, xwcreate will start gwind.

OPTIONS
-display display

Specifies the server to connect to; See X(I) for details. A limitation in xwcreate requires
that the display name must be no more than 20 characters long.

-parent parent
Name of the window which is to be the parent of name. If named, the parent window
must have been created by a previous invocation of xwcreate and must not have been
destroyed byxwdestroy(J); othetwise an error message will be generated. If'parent
window is not named, the RootWindow of the display and screen will be used as the
parent. If specified, parent window's name must be no more than 12 characters long.

-geometry geometry
This option specifies the preferred size and position of the window; See X(I) for details.

-r Requests the X server to create backing store for the window. By default, windows are not
created with backing store.

-bg color
This option specifies the background color. By default, background color of the window
will be black.

-bw pixels
This option specifies the width in pixels of the window border. By default, border of the
window will be 3 pixelS wide.

-bd color
This option specifies the border color. By default, the window border will be white.

-depth depth
This option specifies the visual depth of the window. By default, the window will have the
same depth as its parent. If the specified depth is not supported by the display, an error
will be generated and the window will not be created.

-wrndir directory
is the name of the directory where the pty file for the window will be created. If this
option is not defined, then the directory name will be computed as follows: first, the
environment of the process will be searched for the variable $WMDIR If the variable
$WMDIR is defined in the environment, then it will be used as the desired directory. If
the the variable $WMDIR is not defined in the environment, then the pty file will be
created in the default directory "/dev/screen". If the option -wmdir is defined in the
command line, the directory name will be obtained as follows: If the directory argument
implies an absolute pathname, then it will be taken to be the desired directory. Otherwise,
the directory name will be taken to be relative to the value of the environment variable
$WMDIR If $WMDIR is not defined in the environment, the directory name will be
taken to be relative to /dev/screen. Note: if $WMDIR is defined in the environment, it
must represent an absolute pathname. if -wmdir is defined in the command line, then the
implied directory must have already been created. Othetwise, an error ("Invalid

Hewlett-Packard Company -1- lui 28, 1989

XWCREATE(l) XWCREATE(l)
Series 300 and 800 Only

directory") will be generated.

-title name
is the name to be used to reference the window. The name must be no more than 12
characters long.

X DEFAULTS
xwcreate uses the Xlib routine XGetDefault(3X) to read its Xdefaults, so its resource names are all
capitalized.

Background
Specifies the window's background color.

BorderColor
Specifies the border color. This option is useful only on color displays.

BorderWidth
Specifies the border width.

Depth Specifies the visual depth of the created window.

Retained
If 'on', requests the X server to create backing store for the window.

Wmdir Specifies the default directory where the pty file will be created. See -wmdir above for
details.

Geometry
Specifies the default positioning and/or sizing for the created window. See X(J) for
details.

EXAMPLES
xwcreate FullView

Create a window named "FullView". Since no other argument is provided, the default
geometry, border color, etc. of FullView will be taken from the RootWindow of the
window's display and screen.

xwcreate HaltView -display remote _ host:1.2~-parent FullView
-geometry 4oox200 + 5 + 10 -r -bw 10
Create a window named "HaltView" on the display"remote host:1.2". HaltView will be a
child of the window "FuIlView". The upper left hand corner-of HaltView will be located at
coordinate 5,10 of FullView and will be 400 pixels wide and 200 pixels high. The border
of HaltView will be 10 pixels wide and the border colors will be the same as FullView.

ENVIRONMENT
DISPlAY - the default host and display number.
WMDIR - the window manager directory.
/dev/screen - the default window manager directory.

DIAGNOSTICS

NOTES

If the window is created successfully, xwcreate will remain silent. Otherwise xwcreate prints one or
more error messages to standard output. For example:

No such display.
Named window exists.
Named parent window does not exist.
Couldn't communicate with gwind.

If -wmdir is used or WMDIR environment variable is set to
other than the default, the directory used must exist On the same physical device as "/dev".

The WM ClASS of an xwcreate'ed window is Xwcreate.

If XKiUClient is used (used by some window managers) on one
of the windows created by xwcreate, all xwcreate windows (started with the same "-display"
argument) will also be destroyed.

Hewlett-Packard Company - 2- Ju128,1989

XWCREATE(l) XWCREATE(l)
Series 300 and 800 Only

ORIGIN
HP

SEE ALSO
X(l), XOpenDisplay(3x), xwdestroy(l).

Hewlett-Packard Company -3- Jul28,1989

XWD(l) XWD(l)
Series 300 and 800 Only

NAME
xwd - dump an image of an X window

SYNOPSIS
xwd [options]

DESCRIPTION
xwd is an X Window System window dumping utility. xwd allows X users to store window images
in a specially formatted dump file. This file can then be read by various other X utilities for
redisplay, printing, editing, formatting, archiving, image processing etc.. The target window is
selected by clicking the mouse in the desired window. The keyboard bell is rung once at the
beginning of the dump and twice when the dump is completed.

OPTIONS
-help

-idid

Print out the 'Usage:' command syntax summary.

This option allows the user to specify a target window id on the command line rather
than using the mouse to select the target window.

-name name
This option allows the user to specify that the window named name is the target window
on the command line rather than using the mouse to select the target window.

-root This option specifies that X's root window is the target window.

-nobdrs This argument specifies that the window dump should not include the pixels that
compose the X window border. This is useful in situations where you may wish to
include the window contents in a document as an illustration.

-out filename
This argument allows the user to explicitly specify the output file on the command line.
The default is to output to standard out.

-xy This option applies to color displays only. It selects 'XY' format dumping instead of the
default 'Z' format.

-add value
This option specifies an signed value to be added to every pixel.

-display display
Specifies the server to connect to; see X(J).

ENVIRONMENT
DISPlAY

To get default host and display number.

NOTES
Xwd cannot get the image of child windows with a different number of planes than the specified
window.

FILES
XWDFile.h

X Window Dump File format definition file.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(J) for a full statement of rights and permissions.

ORIGIN
MIT Distribution

SEE ALSO
xwud(I), X(I)

Hewlett-Packard Company -1- Ju128, 1989

XWD2SB(1) XWD2SB(1)
Series 300 and 800 Only

NAME
xwd2sb - translate xwd bitmap to Starbase bitmap format

SYNOPSIS
xwd2sb

DESCRIPTION
This command translates a bitmap file created by the xwd(J) X window dump utility program into
a Starbase bitmap file as described in bitmapfile(4). Translation is done from standard input to
standard output.

Bitmaps created by xwd in the XYPixmap format are translated into plane-major fu//-depth
Starbase bitmaps. ZPixmap format bitmaps are translated into pixel-major Starbase bitmaps.

Xwd format bitmaps with visual class TrueColor or DirectColor are translated into Starbase
bitmaps with the colormap mode CMAP FULL. Other visual classes result in Starbase bitmaps
with the CMAP _NORMAL colormap mOde.

Window borders stored by xwd are stripped from the image during translation.

OPTIONS
none

EXAMPLES
xwd I xwd2sb I pcltrans I lp -oraw

Invokes xwd to dump the contents of a window in ZPixmap format, xwd2sb translates the
window image into Starbase format, pc/trans prepares the image for printing, and lp
spools the image for the printer.

xwd -xy I xwd2sb > sbimage
Invokes xwd to dump the contents of a window in XYPixmap format and xwd2sb to
translate the image into Starbase plane-major full-depth format. The Starbase bitmap
image is placed in the sbimage file. (Note that pc/trans is unable to process plane-major
full-depth images.)

xwd2sb <xwdfile >sbtile
Translates the image in xwdfite to Starbase format and places the result in sbfite.

RESTRICTIONS

ORIGIN

XWD bitmaps must be 1-8, 12, or 24 planes deep. Bitmaps of depth 1-8 may have a visual class of
GrayScale, Static Gray, PseudoColor, or StaticColor. Bitmaps of depths 12 or 24 must be of the
DirectColor or TrueColor visual class.

A 12 plane bitmap must have four bits each for red, green, and blue. A 24 plane bitmap must
have eight bits each for red, green, and blue.

Hewlett-Packard GTD

SEE ALSO
xwd(l), pcltrans(l), bitmapfile(4).

Star base Graphics Techniques, HP-UX Concepts and Tutorials, chapters on "Color" and "Storing
and Printing Images".

Hewlett-Packard Company - 1- Ju128, 1989

XWDESTROY(1) XWDESTROY(l)
Series 300 and 800 Only

NAME
xwdestroy - destroy one or more existing windows

SYNOPSIS
xwdestroy [-wmdir directory] window1 window2 •••

DESCRIPTION
If a window named in the list was created usingxwcreate(11 then it is destroyed, along with its
children. Also the pty devices associated with these windows are removed. Window names may not
be more than 12 characters long.

-wmdir directory
is the name of the directory where the pty file for the window was created. If this option
is not defined, then the directory name will be computed as follows: first, the environment
of the process will be searched for the variable $WMDIR If the variable $WMDIR is
defined in the environment, then it will be used as the desired directory. If the variable
$WMDIR is not defined in the environment, then the pty file will be destroyed in the
default directory "/dev/screen". If the option -wmdir is defined in the command line, the
directory name will be obtained as follows: If the directory argument implies an absolute
pathname, then it will be taken to be the desired directory. Otherwise, the directory name
will be taken to be relative to the value of the environment variable $WMDIR If
$WMDIR is not defined in the environment, the directory name will be taken to be
relative to /dev/screen. Note: if $WMDIR is defined in the environment, it must
represent an absolute pathname. If -wmdir is defined in the command line, then the
implied directory must have already been created. Othetwise, an error ("Invalid
directory") will be generated.

ENVIRONMENT
WMDIR - the window manager directory.
/dev/screen - the default window manager directory.

DIAGNOSTICS
If the windows were destroyed successfully, the program remains silent. If one or more of the
windows could not be destroyed because of some error, appropriate message will be printed on
standard output. For example:

Invalid directoy
Named window does not exist.

ORIGIN
Hewlett-Packard Company

SEE ALSO
XOpenDisplay(3), xwcreate(l).

Hewlett-Packard Company -1- Ju128,1989

XWININFO(l) XWININFO(l)
Series 300 and 800 Only

NAME
xwininfo - window information utility for X

SYNOPSIS
xwininfo [options]

DESCRIPTION
xwininfo is a utility for displaying information about windows. Various information is displayed
depending on which options are selected. If no options are chosen, -stats is assumed.

The user has the option of selecting the target window with the mouse (by clicking any mouse
button in the desired window) or by specifying its window id on the command line with the -id
option. Or instead of specifying the window by its id number, the -name option may be used to
specify which window is desired by name. There is also a special -root option to quickly obtain
information on X's root window.

OPTIONS
-help

-id id

Print out the 'Usage:' command syntax summary.

This option allows the user to specify a target window id on the command line rather
than using the mouse to select the target window. This is very useful in debugging X
applications where the target window is not mapped to the screen or where the use of
the mouse might be impossible or interfere with the applic~tion.

-name name
This option allows the user to specify that the window named name is the target window
on the command line rather than using the mouse to select the target window.

-root This option specifies that X's root window is the target window. This is useful in
situations where the root window is completely obscured.

oint This option specifies that all X window ids should be displayed as integer values. The
default is to display them as hexadecimal values.

-tree This option causes the root, parent, and immediate child windows' ids and names of the
selected window to be displayed.

-recurs This option causes the root, parent, and all progeny windows' ids and names of the
selected window to be displayed. It is a recursive version of the -tree option.

-stats This option causes the display of various attributes pertaining to the location and
appearance of the selected window. Information displayed includes the location of the
window, its width and height, its depth, border width, class, colormap id if any, map state,
backing-store hint, and location of the comers.

-bits This option causes the display of various attributes pertaining to the selected window's
raw bits and how the selected window is to be stored. Displayed information includes
the selected window's bit gravity, window gravity, backing-store hint, backing-planes
value, backing pixel, and whether or not the window has save-under set.

-events This option causes the selected window's event masks to be displayed. Both the event
mask of events wanted by some client and the event mask of events not to propagate are
displayed.

-size This option causes the selected window's sizing hints to be displayed. Displayed
information includes: for both the normal size hints and the zoom size hints, the user
supplied location if any; the program supplied location if any; the user supplied size if
any; the program supplied size if any; the minimum size if any; the maximum size if any;
the resize increments if any; and the minimum and maximum aspect ratios if any.

-wm This option causes the selected window's window manager hints to be displayed.
Information displayed may include whether or not the application accepts input, what the
window's icon window # and name is, where the window's icon should go, and what the
window's initial state should be.

-metric This option causes all individual height, width, and x and y positions to be displayed in
millimeters as well as number of pixels, based on what the server thinks the resolution is.

Hewlett-Packard Company -1- 1u128,1989

XWININFO(l) XWININFO(l)
Series 300 and 800 Only

Geometry specifications that are in +x+y form are not changed.

-english This option causes all individual height, width, and x and y positions to be displayed in
inches (and feet, yards, and miles if necessary) as well as number of pixels. -metric and
-english may both be enabled at the same time.

-all This option is a quick way to ask for all information possible.

-display display
This option allows you to specify the server to connect to; see XCI).

EXAMPLE
The following is a sample summary taken with no options specified:

xwininfo = = > Please select the window about which you
= = > would like information by clicking the
= = > mouse in that window.

xwininfo = = > Window id: Ox60000f (xterm)

= = > Upper left X: 4
= = > Upper left Y: 19
= = > Width: 726
= = > Height: 966
= = > Depth: 4
= = > Border width: 3
= = > Window class: InputOutput
= = > Colormap: OXSOO65
= = > Window Bit Gravity State: NorthWestGravity
= = > Window Window Gravity State: NorthWestGravity
= = > Window Backing Store State: NotUseful
= = > Window Save Under State: no
= = > Window Map State: IsViewable
= = > Window Override Redirect State: no
= = > Comers: +4 + 19 -640 + 19 -640-33 +4-33

ENVIRONMENT
DISPlAY

To get the default host and display number.

SEE ALSO
X(I), xprop(l)

NOTES
Using -stats -bits shows some redundant information.

COPYRIGHT

ORIGIN

Copyright 1988, Massachusetts Institute of Technology.
See XCI) for a full statement of rights and permissions.

MIT Distribution

Hewlett-Packard Company -2- Jul28,1989

XWUD(l) XWUD(l)
Series 300 and 800 Only

NAME
xwud - image displayer for X

SYNOPSIS
xwud [-in file] [-geometry geom] [-display display] [-new] [-raw] [-help] [-IV] [-plane number] [­
fg color] [-bg color]

DESCRIPTION
Xwud is an X Window System image undumping utility. Xwud allows X users to display in a
window an image saved in a specially formatted dump file, such as produced by xwd(J).

Clicking any button in the window will terminate the application.

OPTIONS
-help Print out a short description of the allowable options.

-in file This option allows the user to explicitly specify the input file on the command line. Ifno
input file is given, the standard input is assumed.

-rv If a bitmap image (or a single plane of an image) is displayed, this option forces the
foreground and background colors to be swapped. This may be needed when displaying
a bitmap image which has the color sense of pixel values "0" and "1" reversed from what
they are on your display.

-display display
This option allows you to specify the server to connect to; see X(J).

-geometry geom
This option allows you to specify the size and position of the window. Typically you will
only want to specify the position, and let the size default to the actual size of the image.

-new This option forces creation of a new colormap for displaying the image. If the image
characteristics happen to match those of the display, this can get the image on the screen
faster, but at the cost of using a new colormap (which on most displays will cause other
windows to go technicolor).

-raw This option forces the image to be displayed with whatever color values happen to
currently exist on the screen. This option is mostly useful when undumping an image
back onto the same screen that the image originally came from, while the original
windows are still on the screen, and results in getting the image on the screen faster.

-plane number
You can select a single bit plane of the image to display with this option. Planes are
numbered with zero being the least significant bit. This option can be used to generate a
single plane image to pass to xpr(J) for printing.

-fg color If a bitmap image (or a single plane of an image) is displayed, this option can be used to
specify the color to display for the "1" bits in the image.

-bgcolor
If a bitmap image (or a single plane of an image) is displayed, this option can be used to
specify the color to display for the "0" bits in the image.

ENVIRONMENT
DISPLAY

FILES

NOTES

To get default display.

XWDFile.h
X Window Dump File format definition file.

Needs to be faster when translating colors. Needs to be much faster when translating more than
256 DirectColor colors. Although xwud will display across visual types and depths, if the image
contains more colors than the colormap of the displaying visual, results will be undefined.

Hewlett-Packard Company - 1 - Jul28,1989

XWUD(1)

Series 300 and 800 Only

SEE ALSO
xwd(1), xpr(1), X(1)

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(J) for a full statement of rights and permissions.

ORIGIN
MIT Distribution

Hewlett-Packard Company -2-

XWUD(l)

Jul28, 1989

BDF(4) BDF(4)
Series 300 and 800 Only

NAME
bdf - Bitmap Distribution Format 2.1

DESCRIPTION
A ''bdf' file is a file conforming to Bitmap Distribution Format 2.1. It is used for specifying fonts
for the XU Windowing System. In bdf format, the font is transportable between systems and is
converted to a server natural format via the use of bdftosnf (see bdftosnf(1) for more details).

FILE FORMAT
STARTFONT 2.1

This must be the first line of the file.

COMMENT
This must be the second line in the file and can be 1 or more lines. These lines are
ignored by the font compiler.

FONT family name-face name
This must be the third line in the file. Examples of a family name are "oldenglish",
"6x10.bits", "germanic". Examples of face name are ''bold" and "italic".

SIZE point size x resolution y resolution
This must be the fourth line in the file. point size is usually based on 72 points per inch.
If a font has a point size of 8, it will be 1/9th of an inch high; point size of 16 will be 1/4
of an inch high. The x resolution and y resolution is the pixels per inch on the display
for which the font was created. -

FONTBOUNDINGBOX width height x displacement y displacement
This must be the fifth line in the file. width and height are the maximum width and
height in pixels of the font. x displacement and y displacement indicate (again in pixels)
the lower left comer of the font with respect to the origin.

STARTPROPERTIES p
This is an optional keyword. If included, p indicates the number of special properties
following it. See "SPECIAL PROPERTIES" for a complete description of the special
properties available.

ENDPROPERTIES
If there is a STARTPROPERTIES, there must be an ENDPROPERTIES.

CHARSc
This keyword must be the next statement after FONTBOUNDINGBOX (or
END PROPERTIES if special properties are declared). c indicates the number of
characters the font will contain. CHARS is followed by c STARTCHAR, ENDCHAR
pairs. See "CHARACTER DEFINmON" for details on the information supplied by the
STARTCHAR and ENDCHAR pair.

END FONT
This must be the last line in the file. It indicates the end of the information the font
compiler is to process.

CHARACTER DEFINITION
STARTCHAR name

This is the first keyword for each character to be described for the font. name is the
descriptive name of the glyph, i.e. '1", "x", "1 ", etc.

ENCODING integer
This must be the first keyword to follow STARTCHAR It indicates the Adobe Standard
Encoding value for name. integer must be a positive integer. If it is a -1, it is assumed
that the character is not a member of the Adobe Standard Encoding. In this case, the -1
can be followed by an optional integer specifying the glyph index.

SWIDTH scalable_width _x scalable_width y
This is the scalable width of the character in x and y. To calculate the the width in device
pixels from the scalable width, multiply SWIDm by p times r divided by 72000 where p is
the size of the character in points and r is the device resolution in pixels per inch.

Hewlett-Packard Company -1- Ju128,1989

BDF(4)
Series 300 and 800 Only

DWIDTH width _x width y
width _x and width yare a vector in device units indicating the position of the next
character's origin relative to this character.

BBX BBw BBh BBox BBoy

BDF(4)

BBw and BBh are the width and height of this character. BBox and BBoy are the x and y
displacement from the origin to the lower left corner of the character.

BITMAP
This keyword appears on the line by itself and is followed by BBh lines of hex-coded
bitmap, padded on the right with zeros to the nearest multiple of 8.

ENDCHAR
For each STARTCHAR, there must be an ENDCHAR.

SPECIAL PROPERTIES

ORIGIN

The special properties information is saved in the special properties list of the font for access by
any application wishing more information about the font. The currently supported special
properties are:

FONT ASCENT integer
- Determines the top boundary of the font.

FONT_DESCENT integer
Determines the bottom boundary of the font.

DEFAULT CHAR integer
This is the default character to use for all undefined characters.

POINT SIZE integer
- Same as point _size specified in SIZE.

FAMILY NAME string
Same as/amily_name specified in FONT.

RESOLUTION integer
The resolution in pixels per inch of the display for which the font was created.

X HEIGHT integer
- This specifies the height of the lower case "x" in quarter-dot units (four quarter-dot units

equals one pixel).

WEIGHT integer
Specifies the thickness of the strokes used in designing the font. The range is -7 to 7
(thin - thick).

Character Bitmap Distribution Format 2.1, Adobe Systems, Inc.

SEE ALSO
X(I), Xserver(I), bdftosnf(l)

Hewlett-Packard Company -2- Ju128,1989

Glossary

application program
A computer program that performs some useful function, such as word
processing or data base management.

application server
A computer used solely to provide processing power for application
programs.

active window
The terminal window where what you type appears. If there is no active
window, what y<;>u type is lost. Only one terminal window can be active at
a time.

ampersand (&)
Placed at the end of a command to specify that the client started by the
command should be started as a background process. The command
can be typed after the command-line prompt or included in a file such as
.xllstart or .hpwmrc.

background process
A process that doesn't require the total attention of the computer for
operation. Background processing enables the operating system to execute
more than one program or command at a time. As a general rule, all clients
should be run as background processes.

bitmap
Generally speaking, an array of data bits used for graphic images. Strictly
speaking, a pixmap of depth one (capable of 2-color images).

Glossary-1

bitmap device
An output device that displays bitmaps. The CRT monitor of your system
is a bitmap device.

buffer
An area used for storage.

button
A button on a mouse pointing device. Mouse buttons can be mapped to the
keyboard.

button binding
Association of a mouse button operation with a window manager function.
For example, pressing button 3 on a window frame displays the system
menu.

button mapping
Association of a button number with a physical mouse button.

click
To press and release a mouse button. The term comes from the fact that
pressing and releasing the buttons of most mice makes a clicking sound.

client
A program written specifically for the X Window System. Some clients
make their own windows. Other clients are utility programs.

combined mode
A combination of image and overlay planes in which a single display has a
single screen that is a combination of the image and overlay planes.

command-line prompt
A command-line prompt shows that the computer is ready to accept
your commands. Each terminal emulation window has a command-line
prompt that acts just like the command-line prompt you see on the screen
immediately after login. Usually the command-line prompt is either a $
(for Bourne and Korn shells) or a 'I. (for C shells), but it can be modified.
One popular modification is to print the current working directory and the
history stack number before the $ or '/.. You can find the command-line

Glossary-2

prompt by pressing (Return) several times. Every time you press (RetUffi),
HP-UX prints the prompt.

cut buffer
A buffer (memory area) that holds text that has been deleted from a file.

depth
The number of planes in a set of planes. For example, a set of 12 image
planes would have a depth of 12.

diskless cluster
The networking of several systems (SPUs) together to share a common hard
disk for storage of data and programs.

display
Strictly speaking, the combination of a keyboard, mouse, and one or more
screens that provide input and output services to a system. While "display"
is sometimes used to mean just the CRT screen, a display, as defined here,
can actually include more than one physical screen.

display server
In the X Window System, the display server is the software that controls
the communication between client programs and the display (keyboard,
mouse, and screen combination).

double buffering
A term describing the method used by Starbase wherein half of the color
planes on a monitor are used to display to the screen and the other half are
used to compute and draw the next screen display. This provides smooth
motion for animation and it is faster. However, it does reduce the number
of colors that are available for display on the screen at one time.

double-click
To press and release a mouse button twice in rapid succession.

drag
To press and hold down a mouse button while moving the mouse on the
desktop (and the pointer on the screen). Typically, dragging is used with
menu selecting, moving, and resizing operations.

Glossary-3

file server
A computer whose primary task is to control the storage and retrieval of
data from hard disks. Any number of other computers can be linked to the
file server in order to use it to access data. This means that less storage
space is required on the individual computer.

fonts
A font is a style of printed text characters. Times Roman is the font used
for most newspaper text; Helvetica is the font used for most newspaper
headlines.

foreground process
A process that has the terminal window's attention. When a program is
run in a window as a foreground process (as opposed to a background
process), the terminal window cannot be used for other operations until the
process is terminated.

graphical user interface
A form of communication between people and computers that uses
graphics-oriented software such as windows, menus, and icons, to ease the
burden of the interaction.

home directory
The directory in which you are placed after you log in. Typically, this is
/users/username, where username is your login name. The home directory
is where you keep all "your" files.

hotspot
The area of a graphical image used as a pointer or cursor that is defined as
the "point" of the pointer or cursor.

hpterm
A type of terminal window, sometimes called a "terminal emulator
program" that emulates HP2622 terminals, complete with softkeys. The
hpterm window is the default window for your X environment.

Icon
A small, graphic representation of an object on the root window (typically
a terminal window). Objects can be "iconified" (turned into icons) to
clear a cluttered workspace and "normalized" (returned to their original

Glossary-4

appearance) as needed. Processes executing in an object continue to
execute when the object is iconified.

iconify
The act of turning a window into an icon.

image mode
The default screen mode using multiple image planes for a single screen.
The number of image planes determines the variety of colors that are
available to the screen.

image planes
The primary display planes on a device that supports two sets of planes.
The other set of display planes is known as the overlay planes. These two
sets of planes are treated as two separate screens in stacked mode and one
screen in combined mode .

. input device
Any of several pieces of equipment used to give information to the system.
Examples are the keyboard, a mouse, or a digitizer tablet.

keyboard binding
Association of a special key press with a window manager function. For
example, pressing the special keys (Shift) (Esc) displays the system menu of
the active window.

label
The text part of an icon.

local access
The ability to run a program on the computer you are currently operating.
This is different from remote access, where you run a program on a
computer that is physically removed from the one you are operating.

local client
A local client is a program that is running on your local computer, the
same system that is running your X server.

GlossarY-5

mask
A graphical image used in conjunction with another graphical element to
hide unwanted graphical effects.

matte
A border located just inside the window between the client area and the
frame. It is used to create a three-dimensional effect for the frame and
window.

menu
A list of selections from which to make a choice. In a graphical user
interface such as the X Window System, menus enable you to control the
operation of the system.

minimize
To turn a window into an icon. The terms minimize and iconify are
interchangeable.

modifier key
A key that, when pressed and held along with another key, changes the
meaning of the other key. (CTRL), (Extend charl~ and (Shift) are examples of a
modifier key.

mouseless operation
Although a mouse makes it easy to use the X Window System, the mouse
is not absolutely necessary. The system can be configured to run from the
keyboard alone.

multi- tasking
The ability to execute several programs (tasks) simultaneously on the same
computer.

node
An address used by the system. For example, each device on the system
has its own node. The system looks there whenever it needs to access the
device. A node can also be an address on a network, the location of a
system.

Glossary-6

non-client
A program that is written to run on a terminal and so must be "fooled" by
a terminal emulation window into running in the window environment.

normalize
To change an icon back into its "normal" (original) appearance. The
opposite of iconify.

overlay planes
The secondary set of display planes on a device that supports two sets of
planes. The other set of display planes is known as the image planes. These
two sets of planes are treated as two separate screens.

parent window
A window that causes another window to appear. A window that "owns"
other windows.

pixel
Short for "picture element." The individual dots, or components, of a
screen. They are arranged in rows and columns and form the images that
are displayed on the screen.

pixmap
An array of data bits used for graphics images. Each pixel (picture element)
in the map can be several bits deep, resulting in multi-color graphics
images.

pointer
Sometimes called the "mouse cursor," the pointer shows the location of the
mouse. The pointer's shape depends on its location. In the root window,
the pointer is an x. On a window frame, the pointer is an arrowhead.
Inside the frame, the pointer can be an arrowhead (as when it is inside a
clock or load histogram frame) or an I-beam (as when it is inside a terminal
window).

press
Strictly speaking, to hold down a mouse button or a key. Note that to hold
down a mouse button and move the mouse is called "dragging."

Glossary-7

print server
A computer that controls spooling and other printer operations. This
permits a large number of individuals to efficiently share printer resources.

remote access
The ability to run a program on a computer that is physically removed
from the one you are currently operating. This is different from local access,
where you run a program on the computer that you are operating.

remote client
An X program that is running on a remote system, but the output of the
program can be viewed on your terminal.

remote host
A computer physically removed from your own that you can log in to. See
chapter 4 for prerequisites for establishing a remote host.

resource
That which controls an element of appearance or behavior. Resources are
usually named for the elements they control.

restoring
The act of changing an minimized (iconified) or maximized window
back to its regular size. The terms restoring and normalizing are usually
in te.rchangea ble~

.rhosts
A special file used in network environments that enables a remote user to
log into your local system without using a password. Obviously, this has a
considerable impact on the security of your system.

root menu
The menu associated with the root window. The root menu enables you to
control the behavior of your environment.

root window
The root window is what the "screen" (the flat viewing surface of the
terminal) becomes when you start X. To a certain extent, you can think
of the root as the screen. The root window is the backdrop of your X
environment. Although you can hide the root window under terminal

Glossary-8

windows or other graphic objects, you can never position anything behind
the root window. All windows and graphic objects appear "stacked" on the
root window.

screen
The physical CRT (Cathode Ray Tube) that displays information from the
computer.

screen dump
An operation that captures an image from your screen, saves it in a file,. and
enables you to send that file to a printer for hardcopy reproduction.

server
A program that controls all access to input devices (typically a mouse and a
keyboard) and all access to output devices (typically a display screen). It is
an interface between application programs you run on your system and the
system input and output devices.

stacked mode
A combination of image and overlay planes in which a single display has
two "logical" screens, one the image planes, the other the overlay planes.
Typically, the image planes are used to display graphics while the overlay
planes are used to display text.

system menu
The menu that displays when you press the system menu button on the HP
Window Manager window frame. Every window has a system menu that
enables you to control the size, shape, and position of the window.

TermO
An HP level 0 terminal. It is a reference standard that defines basic
terminal functions. For more information, see TermO Reference in the
HP-UX documentation set.

terminal-based program
A program (non-client) written to be run on a terminal (not in a window).
Terminal-based programs must be "fooled" by terminal-emulation clients to
run on the X Window System.

Glossary-9

terminal emulator
A client program that provides a window within which you can run
non-client programs. The non-client program runs just as though it were
running from a real terminal rather than a window acting as a terminal.

terminal type
The type of terminal attached to your computer. HP-UX uses the terminal
type to set the TERM environment variable so that it can communicate with
the terminal correctly. The terminal type is usually set at login, but can be
set afterward.

terminal window
A terminal window is a window that emulates a complete display terminal.
Terminal windows are typically used to "fool" non-client programs into
believing they are running in their favorite terminal-not a difficult task in
most cases. When not running programs or executing operating system
commands, terminal windows display the command-line prompt. Two
terminal windows are supplied with Xll-hpterm, which emulates HP
terminals, and xterm, which emulates DEC and Tektronix terminals.

text cursor

tile

The line-oriented cursor that appears in a terminal window after the
command prompt. The term is used to distinguish the cursor used by a
window from the cursor used by the mouse, the pointer.

A rectangular area used to cover a surface with a pattern or visual texture.
The HP Window Manager supports tiling, enabling users with limited color
availability to create new color tiles blended from existing colors.

title bar
The title bar is the rectangular area between the top of the window and the
window frame. The title bar contains the title of the window object, usually
"Terminal Emulator" for hpterm windows, "xclock" for clocks, and "xload"
for load histograms.

transient window
A window of short duration such as a dialog box. The window is only
displayed for a short time, usually just long enough to get some direction
from the user.

Glossary-10

window
A data structure that represents all or part of the CRT display screen.
It contains a two-dimensional array of 16-bit character data words, a
cursor, a set of current attributes, and several flags. Visually, a window is
represented as a rectangular subset of the display screen.

window-based program
A client or program written for use with the X Window System. The
"opposite" of a window-based program is a terminal-based program.

window decoration
The frame and window control buttons that surround windows managed by
the HP Window Manager.

window manager
The window manager controls the size, placement, and operation of
windows on the root window. The window manager includes the functional
window frames that surround each window object as well as a menu for the
root window.

XO.hosts
A file that tells the X Window System which remote hosts can access the
local server and hence the local display.

xclock
An XII client program that displays the time, either analog (hands and
dial) or digital (text read out).

xload
An XII client program that displays the work load of the system as a
histogram.

xterm
An XII client program that displays a terminal window that emulates DEC
and Tektronix terminals.

Glossary-11

Index

Special characters

!,5-2
#,4-25,5-2
$@, 3-2
&, 1-4, 2-3, 4-5
@, 6-35

A

accelerators, 2-16, 6-39
accessing remote hosts, 5-44
activating a window, 3-10
active window, 2-3, 3-5, 6-57
adding

frame elements, 6-50
hosts with xhost, 5-46
users, 5-19

analog clock, 4-20
appearance,customizing, 5-1
applications

CAD, 2-16
graphics, 2-16
process-intensive, 2-14
programs, 2-10
servers, 2-14
stopping, 3-23

ASCII text files,choosing an editor, 5-2
attributes, 7-43, 7-45

B

background processing, 1-4, 2-3, 4-5
backup copies, 5-2
bdftosnf, 4-2, 7-41

beginner's guides, 1-6
behavior ,customizing, 5-1
bindings,default, 6-46
bitmap, 5-23
bitmapped device, 2-6
bitmaps, 4-3, 5-20-21, 5-23, 6-34, 7-41
bottom menu selection, 3-12
Bourne shell, 5-17
buffer, cut, 4-18
buffering, 9-5
buttons

C

bindings, 6-41, 6-43, 6-45
click timing, 6-45
locations, 1-4, 4-17, 5-22, 5-41
maximize, 3-10
minimize, 3-10
window menu, 3-10

CAD applications, 2-16
capital letters, 1-5
capturing windows, 8-1
case sensitivity, 1-5
cathode ray tube, 2-6
changing. See modifying
checking hosts with xhost, 5-46
choosing screen mode, 7-3
clicking, 3-9
client, 3-2
clients, 2-2, 4-1, 5-16

appearance, 6-16
changing, 5-11

Index-l

colors, 4-24, 5-'3
configuration, 4-2
defined, 2-10, 4-1
displaying, 4-28
graphics functions, 4-3
initialization, 4-2
matting, 6-59
options, 4-23
positioning, 4-27, 5-16
remote, 4-6
root window, 3-4
starting, 3-2, 4-6-7, 5-13
stopping, 3-24, 4-12
viewable services, 4-3
window management, 4-2,6-2

client/server model, 2-7
clock, 4-20, 5-5
close menu selection, 3-12
closing windows, 3-24
cluster, diskless, 2-15
colorable elements, 4-24

determining, 5-4
color database, creating, 7-35
color images ,printing, 8-8
coloring

automatically started windows, 5-9
clock elements, 5-5
frame elements, 6-9
load histogram elements, 5-5
matte elements, 6-59
scrollbars, 4-16, 5-10
single instance, 5-9
softkeys, 5-10
terminal window elements, 5-5
windows started from menus, 5-9

colormap focus policies, 6-58
color ,reversal, 8-7
colors, 4-24

available, 5-7
changing client colors, 5-4
customizing, 5-3

Index-2

names, 4-24-25, 5-8
options, 4-24
placement, 5-9
rgb specifications, 4-25
setting, 4-24
using hexadecimal values, 4-25, 5-5

COLUMNS environment variable, 6-2
combined mode, 7-3
command line, 2-1, 3-2, 4-4, 4-28
command panel, bitmap, 5-23
compiling bitmap distribution fonts, 7-41
compress command, 7-41
configuration clients, 4-2
configuration files, 5-2

editing, 5-2
mwm, 6-7

configurations
custom, 7-1
default, 7-2
special, 7-9

configuring
X Server, 7-43

configuring, window manager, 2-8
contexts for keyboard bindings, 6-48
contracting text, 4-19
controlling communication, 2-7
controls, window manager, 3-4
conventions, 1-3
conversion utilities, 9-14
copying

sys.xllstart to .xllstart, 5-11
sys.Xdefaults, 5-3
text, 4-18

corner pieces, 3-10
CRT, 2-6
C shell, 5-17
cursor, 5-27, 5-31
custom

bitmaps, 5-20
color database, 7-35
cursors, 5-27

masks, 5-27
pixmaps, 6-24
screen configurations, 7-1

custom behavior ,disabling, 6-62
customizing

keyboard input, 7-31
cut buffer, 4-18
cutting text, 4-18

D

data storage, file servers, 2-14
DCE, defined, 2-12
declaring resources, 6-15
decoration, 2-10
DEC VTI02, 4-16
default

device files path, 7-14
display number, 3-2
input device file, 7-10
screen configuration, 7-2
XOdevices configuration, 7-20

default behavior,switching to, 6-62
default button bindings, 6-41
default display update interval, 4-23
default files, 3-4, 4-6
default keyboard bindings, 6-46
default root menu, 3-22, 6-33
default screen configuration file, 7-9
default server, 3-3
default terminal, 4-14
default window menu, 6-32
defining the display, 7-8
deleting hosts with xhost, 5-46
depth option, 9-10
desktop, 1-4
destroying a window, 9-11
determining colorable elements, 5-4
device driver file, 7-5
devices, input, 7-10
digital clock, 4-20
diskless clusters, 2-5, 2-15

diskless workstations, 2-15
disks,hard, 2-5
display, 2-6, 4-28

defining, 7-8
finding variables, 7-8
hardware, 7-3
pixmap for monochrome, 6-11
server, 2-7
specifying on the command line, 4-28

display hardware options, 9-2
displaying remote processes, selection

method, 4-10
display planes, 9-3
display variable,resetting, 7-9
distributed computing environment ,defined ,

2-12
double buffering,defined, 9-5
double-clicking, 3-9
dragging, 3-9
dumb windows, 9-7
Dvorak keyboard, 7-34

E

editing, 5-2, 5-18
button bindings, 6-43
button click timing, 6-45
files, 5-19
keyboard bindings, 6-49
menus, 6-34, 6-39
modifier key bindings, 7-31
preferences, 7-37
XOscreensj 7-2

elements, 6-26
emulating an HP terminal, 4-14
end functions, 6-38
env, 5-18
environment color placement, 5-9
environment variables, 6-2
error messages, 5-11
/ etc/hosts file, 5-44
exiting

Index-3

clients, 3-24
programs, 4-13
window system, 3-23

explicit focus policy, 6-58
extending text, 4-19
extensions, 5-36

F

feedbackwindows,appearance, 6-16
file servers,defined, 2-14
focus policies, 6-57
font alias, 5-36
font compiler. See bdftosnf
fontlist, 5-39
fonts, 4-29, 5-31, 5-40

extensions, 5-36
fixed, 4-29
list of available, 4-29
specifying, 5-38

Foreground, 7-45
foreground processing, 1-4, 2-3
frames, 2-10,3-10, 6-8-12, 6-49
functions, 6-34

G

graphical user interface, 2-1
graphics accelerators, 2-16
graphics functions clients, 4-3
graphics monitors, 9-2
graphics station, described, 2-16
grid, bitmap, 5-23
gwind, 9-9
gwindstop, 4-3, 9-9, 9-11

H

hard disk, 2-5
hardware, 2-4, 7-3
hexadecimal color values, 4-25, 5-6
histogram. See xload
hosts, 5-43, 5-46
hotspot, 5-28

Index-4

HP-HIL devices, 2-7
HP OSF /Motif reference books, 1-7
hpterm, 2-10,3-5, 4-3, 4-15-16, 5-15
HP TermO terminal, 4-14
HP terminal emulation with hpterm, 4-14
HP-UX, 1-4,2-13

tips, 1-4
HP Window Manager, 5-12
HP Windows/9000, 3-1
hpwm, 2-7, 3-9,4-2,6-8, A-I
hpwm and mwm differences, A-2

icon box, 6-28
keyboard focus, 6-31
minimizing, 6-28
placing icons in, 6-30
specifying, 6-28

iconic option, 6-20
iconifying a window, 3-18
Icons

appearance, 6-16-17, 6-22
behavior, 6-22
coloring, 6-26
defined, 2-8
displaying window menu, 6-20
getting keyboard focus, 6-20
image, 5-25, 6-18
label, 6-17
manipulating, 6-19
menu, 3-21
names, 4-20
normalizing, 3-18, 3-20, 6-20
placement, 3-19, 3-21, 6-20
resources, 6-21
selecting, 3-21
sizing, 6-23
starting clients as, 6-20
tiling, 6-26

image mode, 7-3
image planes, 9-3

images, 6-18,8-7
initialization clients, 4-2
input devices, 2-5, 2-7, 7-10
input/output, native language, 7-50
interaction model, server-client, 2-2
interfaces, graphical, 1-1, 2-1

K
key bindings, 6-46, 7-31
keyBindings resource, 6-48
keyboard

assigning mouse functions, 7-22
Dvorak, 7-34
input devices, 2-5
input directed by mouse, 3-6
special keys, 6-46
using, 6-46

keyboard bindings, 6-48
keyboard focus, 6-31, 6-58
keyboard input, 7-31
key map,printing, 7-34
key remapping expressions, 7-32
kill, 9-11
killing

processes, 4-13
programs, 4-13

Korn shell, 5-17

L

labels,icon, 6-17
LAN, 2-6, 2-12
line, copying using hpterm, 4-18
LINES environment variable, 6-2
list colors, 5-7
load, 4-23, 5-5
local access, 2-3
local area network, 2-6
local clients, 4-6
local processing, 2-13
local programs, 2-12
location. See placement

login, 1-6,4-11,4-17,5-17-18,5-44
lowercase letters, 1-5

M
man pages, defined, 1-6
manual conventions, 1-3
masks, custom, 5-27
mattes, 6-59
maximize button, 3-10
maximize menu selection, 3-12
menus

accelerators, 6-39
appearance, 6-16
button, 3-10
changing, 6-39
creating, 6-40
default, 6-32
defined, 2-7
greyed out entries, 6-35
managing, 6-31
mnemonics, 6-39
root, 2-7
selections, 6-39
titles, 6-38
using, 4-16
window, 2-7, 6-39
window manager, 6-31

messages, error, 5-11
minimize, 3-18
minimize button, 3-10
minimize menu selection, 3-12
mkfontdir, 4-2
mknod command, 7-5
mnemonics, 3-12, 6-39
modes, screen, 7-3, 9-4
modifying

button bindings, 6-43
button click timing, 6-45
colors, 5-29
functions, 6-34
keyboard bindings, 6-49

Index-5

login files, 5-18
menus, 6-34, 6-39
modifier key bindings, 7-31
original files, 5-2
patterns, 5-29
preferences, 7-37
screen placement, 6-21
shapes, 5-29
window frame pixmap, 6-11
window size, 3-14
XOpointerkeys, 7-21
XOscreens, 7-2

monitor type, 9-2
monochrome display, 6-14
mouse, 2-6

alternatives to, 2-7
button bindings, 6-41
button locations, 1-4
displaying root menu, 3-22
moving icons, 3-21
moving windows, 3-13
operations, 6-41
tracking, 7-5
using, 6-41

mouse button bindings, 6-41
mouse buttons, 4-17, 5-22, 5-41, 7-18
mouse functions, 7-22
mouseless operation, 2-5, 7-20
mouse operations, 3-8
mouse pointer and active window, 3-6
move menu selection, 3-12
moving

icons, 3-21
images on paper, 8-7
windows, 3-13

multiple screen devices, 7-5
multi-seat, 3-3
multi-tasking, 2-3

HP-UX, 2-13
multi-vendor

communications, 2-16

Index-6

networking, 2-4
mwm, 3-4,4-2,6-7-8,6-15,6:-35,6-62
mwm_bw entries in . X defaults , 6-15

N

naive windows, 9-7
native language input/output, 7-50
networking, multi-vendor, 2-4
new window, 3-23,5-39
node, 2-15
non-clients, 2-2, 4-1, 4-6, 4-10, 4-13, 5-14
normalizing, 3-20

o
operating modes, 9-3
operating system, HP-UX, 2-13
options, 7-37
OSF /Motif Window Manager. See mwm
overlay mode, 7-3
overlay planes, 9-3

p

PackIcons, 6-30
PaintJet, 8-8
parent window, 4-7
password, use of, 1-6
pasting text, 4-18
patterns, 5-26, 5-31, 6-11
PID, 4-13
pixels, 3-14
pixmaps, 6-11, 6-24, 6-60
placement

icons, 6-21
of icons, 3-19
specification, 4-26
window, 6-53

placement ,clients, 4-27
planes

image, overlay, 9-3
pointer, 2-6

and keyboard input, 3-6

direction keys, 7-23
specifying keys, 7-27

pointer focus policy, 6-58
pointing device, 2...:6
positioning clients, 5-16
position resources, 6-54, 6-56
precedence,icon images, 6-19
pressing, 3-9
printing

color images, 8-8
key map, 7-34
screen dumps, 8-4

print servers, defined, 2-15
processes, 2-3, 4-13
process ID, 4-13
processing, 1-4

background, 2-3
local, 2-13
remote, 2-13

process-intensive applications, 2-14
. profile , 5-17
programming the X Window System, 1-7
programs

remote and local, 2-12
running, 2-12, 4-6, 5-13, 5-47
setting colors, 4-24
stopping, 3-23, 4-12
terminal-based, 2-10
window-based, 2-10
window-smart, 2-10

pulldown menu, 3-11

R

raising a window, 3-16
raw mode, 9-12
redrawing the screen, 6-4
reference books, 1-8
reference information, 1-6
refining control, 6-54
refresh, 3-23
remapping, 7-31

remote access, 2-3
remote clients, 4-6

display selection, 4-8
remote hosts, 4-7

accessing, 5-44
setting up a login, 5-44
starting programs, 5-47
using, 5-43

remote non-clients, starting, 4-10
remote processing, 2-13
remote programs, 2-12
removing

frame elements, 6-50
graphics litter, 6-4

remsh, 5-48
repainting the screen, 6-3
resize, 4-2, 6-2
resizing

images on paper, 8-7
windows, 3-14

RESOURCE_MANAGER property, 7-43
resources, 6-26

client-specific, 6-62
coloring icons, 6-26
controlling, 6-57
defined, 6-9
focus policy, 6-57
icon box, 6-29
icon placement, 6-21
icon size, 6-24
icon tiling, 6-27
matte, 6-59
mwm, 6-62
size, 6-54
window control, 6-54
window decoration, 6-49
window frame, 6-10, 6-12
window frame, coloring, 6-59
window frame, monochrome, 6-14

restart, 3-23
restore menu selection, 3-12

Index-7

restoring, 3-20
reversing colors, 8-7
rgb, 4-2, 7-35
.rhosts, 4-8, 5-45
root menu, 2-7

default, 6-33
displaying, 3-22
selecting, 3-22

root window, 1-4, 2-6
clients, 3-4
cursor, 5-31
location specification, 4-26
menu, 2-7
placing clients, 4-27
root menu, 3-22
size specification, 4-26
started by server, 3-4
tile patterns, 5-31
tiling, 5-26
with terminal window, 3-4

running
programs, 4-6
Starbase in raw mode, 9-12

running programs, 4-6

S
SAM, 5-17,5-19
sb2xwd, 4-3, 9-14
.scf extension, 7-41
screen

configurations, 7-1
defined, 2-6
depth, 9-6
devices, 7-5
dumps, 8-1, 8-3
mode, 7-3
modes, 9-4
repainting, 6-3

scrollbars, 4-16, 4-19, 5~10
scroll features, 4-16
seat, 3-3

Index-8

server, 2-2, 2-7, 3-2, 7-41, 7-43, 9-3
starting, 3-2
starts root window, 3-4

server-client interaction model, 2-2
shells, 5-18
shuffle windows, 3-23
SIze

changing for windows, 3-14
specification, 4-26
window, 6-53

size menu selection, 3-12
size resources, 6-54, 6-56
sizing icons, 6-23
smart windows, 9-7
.snf extension, 7-41
soft keys , 4-15, 5-10
special configurations, 7-9
special input devices, 7-10
specifying

color names, 4-24
fonts, 5-38, 6-15
icon colors, 6-26
key remapping expressions, 7-32
pointer keys, 7-27
size and location, 4-26
the font in the command line, 4-29

SPU, 2-5
stacked mode, 7-3
Starbase running in raw mode, 9-12
start clock, 3-23
starting

client options, 3-2
clients, 4-6, 5 ... 13
local clients, 4-6
multi-seat systems, 3-3
mwm, 3-4
non-clients, 4-6, 5-14
programs, 5-13, 5 ... 47
remote clients, 4-7
remote shell, 5-48
server options, 3-2

X, 3-1, 3-4, 5-17
start load, 3-23
start problems, X Window System, 3-6
sticky menu ,defined , 3-11
stopping

clients, 3-24, 4-12
non-clients, 4-13
programs, 4-12
window system, 3-23

syntax
general, 4-4
hpwm resource, 6-35
mwm resource, 6-2,6-4-5,6-7,6-16-17,

6-22, 6-25, 6-27, 6-34, 6-39-40, 6-
45, 6-49, 6-51-53, 6-56-58, 6-61

resources, 6-15
system load, 4-22
System Processing Unit, 2-5
sys.Xdefaults, 5-3, 6-15, 6-17

T

Tektronix 4014,4-16
TermO terminal, 4-14
TERM environment variable, 6-2
terminal-based programs, 4-1
terminal emulation, 2-10, 4-14, 4-16
terminal window, 3-4, 4-15, 5-5
text cursor, 3-6
text editing, 4-18
tiling, 5-26,5-31,6-11-12,6-26,6-60
time, 4-20
timing, button click, 6-45
tips, 1-4
title bar, 3-10
titles,menu, 6-38
tracking with multiple screen devices, 7-5
transparent background color, 9-14
transparent windows, 9-12
type styles. See fonts
typographical conventions, 1-3
typographical tips, 1-5

U
uppercase letters, 1-5
user ID, use of, 1-6
users, adding, 5-19
/usr/lib/Xll/,3-3
utilities,xwininfo, 6-5
uwm, 4-2, 5-12, 6-8, A-4

V

viewable clients, 4-23
viewable services clients, 4-3
viewing screen dumps, 8-1

W

window appearance, 6-8
window-based programs, 2-10
window frames, 3-10. See also frames
window management clients, 4-2, 6-2
window manager, 2-7-8, 3-4, 3-8, 5-12, 6-

8, 6-15, 6-31, 6-35, 6-38
window manager functions. See functions
window menu, 2-7,6-32

button, 3-10
changing, 6-39
displaying, 3-10
icon box, 6-30
of icons, 6-20
resize window, 3-14
selecting from, 3-10
selections, 3-12

window-naive (dumb) programs, 9-7
windows, 1-1

active, 2-3, 3-5
capturing, 8-1
changing to icons, 2-8, 3-18
closing, 3-24
control, 6-54
decoration, 6-49
hpterm, 3-5
login, 4-17

Index-9

managing, 6-1, 6-8
moving, 3-13
placement, 6-53
raising, 3-16
removing, 3-23
resizing, 3-14
setting colors, 4-24
size, 6-53
transparent, 9-12
without frames, 6-49

Windows/9000, 3-1
window-smart programs, 2-10, 4-1, 9-7
window system, 1-4, 3-1, 3-23

controlling, 2-7
window titles, 4-20
workstations, Series 300, 2-13

X

XOdevices, 3-3
XO.hosts, 4-8
XOscreens, 3-3, 7-2
XII clients. See clients
XII non-clients. See non-clients
x11start, 3-1, 3-3, 4-2
.x11start , 5-11
XII, starting at login, 5-17
xclock, 4-3, 4-20
.Xdefaults, 4-6, 5-3, 6-15, 6-17, 7-43
X*devices, 7-12, 7-15, 7-20
X environment , customizing , 5-1
xfd, 4-3, 5-40
xhost, 4-2, 5-46
xinit, 3-4, 4-2

Index-10

xinitcolormap, 4-2
xload, 4-3, 4-22
xmodmap, 4-2~ 7-19, 7-34
X*pointerkeys, 7-21
xpr, 4-3, 8-4, 8-7
xrdb, 4-2, 7-43
xrefresh, 4-2, 6-4
X*screens, 7-2, 9-1
xseethru, 4-3, 9-13
X server, 2-7. See also server
Xserver, 4.,.2
xset, 4-2, 7-37
xsetroot, 4-3, 5-29, 9-13
X startup script, 3-2
xterm, 2-10,4-3, 4-16
xwcreate, 4-3, 9-9
xwd, 4-3, 8-1
xwd2sb, 4-3, 9-14
xwdestroy, 4-3, 9-9, 9-11
X window system, 3-1
X Window System

basics, 3-1
beginners guides, 1-6
common features, 2-4
configuring, 7-16
description, 1-4
fonts, 4-29
programming, 1-7
reference books, 1-7
start problems, 3-6

xwininfo, 4-2, 6-5
xwud, 4-3, 8-1, 8-3

HP Part Number
98794-90001
Microfiche No. 98794-99001
Printed in U.S.A. E0989

Fliffl HEWLETT
~~ PACKARD

98794-90601
For Internal Use Only

