Using the X Window System

HP 9000 Series 300/800 Computers

HP Part Number 98794-90001

/A ciciaro

Hewlett-Packard Company
1000 NE Circle Blvd., Corvallis OR 97330

Notice

The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Warranty

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

UNIX is a registered trademark of AT&T in the USA and other countries.

Courier, Helvetica, and Times © 1984, 1987 Adobe Systems, Inc. Portions (©
1988 Digital Equipment Corporation.

Helvetica is registered trademark of Linotype.
Microsoft and Presentation Manager are registered trademarks of Microsoft.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the USA
and other countries.

Certification of conformance with the OSF /Motif user environment is pending.

(© 1989 Hewlett-Packard

Printing History

The manual printing date and part number indicate its current edition. The
printing date will change when a new edition is printed. Minor changes may be
made at reprint without changing the printing date. The manual part number
will change when extensive changes are made.

Manual updates may be issued between editions to correct errors or document
product changes. To ensure that you receive these updates or new editions, you
should subscribe to the appropriate product support service. See your HP sales
representative for details.

December 1988 ... Edition 2
September 1989 ... Edition 3

Contents

——
1. How to Improve Your X Life

How This Manual Is Organized 1-1
Conventions oL 1-3
Running HP-UX: Some Tips 1-4
What Is HP-UX and the X Window System? 1-4
Why Background Processing Is Important 1-5
Case Sensitivity and Other Typographical Tips 1-5
Working with HP-UX Manuals 1-6
Logging In to HP-UX 1-6
For More Information 1-6
Whereto GoNext 1-8

2. Understanding Window Systems
What Is the X Window System? 2-1
X11 Is Based on the Server-Client Interaction Model . 2-2
Multi-Tasking Makes X11 a Powerful Tool 2-3
X Allows Both Local and Remote Access 2-3
The X Window System Allows Multi-Vendor Networking . 2-4
The Parts of a Typical X Window System 2-4
The Computer Hardware System 2-5
The SPU Does the Computing 2-5
The Hard Disk Stores Data 2-5
The Keyboard Enters Text 2-5
The Pointing Device (Mouse) Points and Selects . 2-6
The Screen Displays Output - 2-6
The LAN Connects to the Network 2-6
Other Pointing Devices 2-7
The X Server Controls Communication 2-7
The Window Manager Controls Your Windows 2-7
The Window and Root Menus 2-7

Contents-1

Icons oL Ll oLl
Window Frame Decoration
Application Programs Run in Your X Environment
Window-Smart Programs Are Called Clients
Terminal-Based Programs Must Be Fooled
The Distributed Computing Environment
Workstations Provide Local and Remote Processing
Application Servers Handle Process-Intensive Applications .
File Servers Supply Data Storage
Print Servers Control the Printers
Graphics Station for Specialized Graphics Applications
Multi-Vendor Communications
Whereto GoNexto

3. Using the X Window System
Starting the X Window System
Command-Line Options for x11start S
Client Options
Server Options
Examples 0 L.
Starting X on a Multi-Seat System
Starting Seat 0o L. Coe
Starting Seat 1 oo L.
What to Expect When X Starts
The Server Creates the Root Window
A Terminal Window Appears on the Root Window
What to Do If X11 Doesn’t Start
Working With Windows
Which Mouse Button Does What
The Anatomy of an mwm Window Frame
Activatinga Window oL
Displaying and Selecting from the Window Menu
Using a Sticky Window Menu
Using a Pulldown Window Menu
Using the Keyboard to Display the Window Menu
Window Manager Selections
Moving a Window around the Screen
Changing the Size of a Window

Contents-2

Raising a Window to the Top of the Window Stack 3-16

Iconifying a Window00 oo 3-18
Turning an Icon Back intoa Window 320
More Work withIcons 3-21
Displaying and Selecting from an Icon’s Menu 3-21
Moving Icons around the Screen e 321
Displaying and Selecting from the Root Menu L. 322
Exiting From the X Window System 3-23
Stopping Application Programs Lo 324
Following the Program’s Normal Exit Procedure 3-24
Closing the Window 324
Stopping the Window System 324
What Next o o ..o . 325
Running from the Command Line
Meeting the X11 Clients 4-2
What the X11 Clients Do 4-2
Specifying the General Syntax for Command-Line Starts . . . 4-4
Specifying the Syntax 4-5
Choosing Background Processing 4-5
Starting Programs L. .. 4-6
Starting Local Clients 4-6
Starting Local Non-Clients 4-6
Starting Remote Clients 4-7
Gaining Remote Access 4-7
Starting the Client 4-8
Selecting the Display 4-8
Examples of Starting Remote Clients 4-9

Example 1: Logging In to a Remote Host the Wrong Way 4-9
Example 2: Logging In before Running the Client in

Background o000 0oL 4-9
Example 3: Using a Remote Shell to Start a Client . . . 4-10
Starting Remote Non-Clients 4-10
Example 1: Logging In to a Remote Host before Running the
Non-Client o 4-11
Example 2: Starting a Window That Starts a Remote
Non-Client e 411
Example 3: Starting a Remote Non-Client Window 4-12

Contents-3

Stopping Programs C e e e e e o 412

Stopping Clients e e e e B S
Stopping Non-Clients e e e e S 2 I
Killing Programs That Won’t Stop 413
Other Ways to Stop a Program B S I
Killing the Program’s Process B S s
Terminal Emulation Clients 414
Emulating an HP Terminal with the ‘hpterm’ Client 4-14
Syntax L. Lo 4-15
Using ‘hpterm’ Termlna,l Window Softkeys 4-15
Coloring ‘hpterm’ Scrollbars 416
Emulating a DEC or Tektronix Terminal 4-16
Syntax . . . P X
Using ‘xterm’ Smoll Features i X
Using ‘xterm’ Menus T & 4
Special Terminal Emulator Options B o
Making a Login Window D e N
Cutting and Pasting with the Mouse T S

To cut and paste using ‘hpterm’ 4-18

To cut and paste using ‘xterm’” 4-18
Scrollbars e)
Window Titles and Icon Names e e e e e e o420
Telling Times with ‘xclock” 420
Syntax D o4
Some ‘xclock’ Options 421
Marking the Half Hours 421
Selecting the Clock Format o 574 |
Updating the Time 421
Examples Y S A
Viewing System Load with ‘xload’ N S22
Syntax and Options 422
Some ‘xload’ Options 423
Updating the Load 423
Scaling the Histogram Graph Y B
Example o 8
Working with Common Client Optlons C e e e e e . 424
Color Options . . . Y a2
Available Client Color Optlons e e e e e e e . 424

Contents-4

Using Hexadecimal Color Values on the Command Line . . 4-25

Examples 4-25
Specifying Size and Location on the Command Line 4-26
The Syntax of the ‘-geometry’ Option 4-26
Placing Clients on the Root Window 4-27
Example e 4-28
Specifying the Display on the Command Line 4-28
The Syntax for the ‘—display’ Option 4-28
Example00 L 4-29
Specifying the Font in the Command Line 4-29
Working with Fonts 4-29
Example0 0000 4-30
Whereto GoNext 430
Customizing Your Local X Environment
Before You Begin Customizing 5-1
How to Begin Customizing 5-2
Making Backup Copies of Your Work 5-2
Making Incremental Changes 5-2
Choosing a Text Editor 5-2
Where to Begin Customizing 5-3
Customizing the Colors of Clients 5-3
Copying ‘sys.Xdefaults’ to ‘. Xdefaults” 5-4
Changing Client Colors 5-4
Determining Which Elements to Color 5-5
Syntax L L. oo e e e e e 5-6
Examples e e e e e e e e 5-6
What Colors Are Available 5-7
Where to Find the Available Color Names 5-8
Determining Where to Color Your Environment 5-9
Coloring a Single Instance of a Client 5-9
Coloring Windows that Start Automatically 5-9
Coloring Windows that Start from Menus 5-10
Coloring ‘hpterm’ Softkeys and Scrollbars 5-10
Changing the Clients that Start When You Start X 5-11
Copying ‘sys.x11lstart’ to ‘.x1lstart’ 5-11
Viewing X11 Start Error Messages 5-12
Starting a Different Window Manager 5-12

Contents-5

Starting Programs Automatically 5-13

Syntax and Examples L. . 513
Starting Clients 513
Starting Non-Clients 514
Discovering Your Options 515
Starting X11 at Login s 2
Modifying Login Files 518
Finding Out Which Shell You Use 518
Editingthe File 5-18
Viewing the Result of Your Edit 5-19
Using the ‘SAM’ Program 520
Creating Custom Bitmaps with ‘bitmap’ 520
Syntax and Options 5-20
Using ‘bitmap’ b21
Examples 525
Creating an Icon Image 525
Creating Root Window Tiles 5-26
Creating Custom Cursors and Masks R X
Customizing the Root Window with ‘xsetroot’ 530
Syntax and Options 530
Examples 531
Changing the Root Window Tile Pattern 531
Changing the Root Window Cursor 531
Working with Fonts 532
What Fonts are Available? 532
Specifyinga Font 533
Font Characteristics 533
The ‘fonts.dir’ File s S 121
Font Aliases 536
Changing the Alias Search Path B e 1
Adding or Deleting Fonts 538
Choosing Where to Specify aFont 5-39

Making All Instances of a Client Have the Same Font . . . 5-39
Specifying the Font of a Window that Starts Automatically 5-39

Specifying the Font of a Window that Starts from a Menu . 5-39
Displaying a Font with ‘xfd> 540
Syntax and Options 540
Using ‘xfd> R R 5 |

Contents-6

Example oo 5-42

Using Remote Hosts 5-44
Gaining Access to Remote Hosts 5-44
Setting Up a Login on a Remote Host 5-44
Setting Up an ‘X0.hosts’ File 5-45
Preparing a ‘rhosts’ File 5-45
Adding and Deleting Hosts with ‘xhost’ 5-46
Syntax and Options 5-46
Example 0000000 5-47
Starting Programs on a Remote Host 5-48
Starting a Remote Program when you start X11 5-48
Starting a Remote Program from a Menu 5-49
Exampleo o000 5-49
Where To GoNext 550
Managing Windows
Clients That Help You Manage Windows 6-2
Resetting Environment Variables with ‘resize’ 6-2
When to Use ‘resize’ 6-2
Syntax and Options 6-2
Example o000 .. 6-3
Repainting the Screen with ‘refresh” 6-4
When to Use ‘xrefresh” 6-4
Syntax and Options - 6-4
Example 6-5
Getting Window Information with ‘xwininfo’ 6-5
Syntax and Options 6-5
Exampleo . 6-6
Managing Windows with the OSF/Motif Window Manager . . 6-7
When to Use ‘mwm’ 6-7
Syntax and Options 6-7
Example00 o000 6-8
Managing Windows with Other Window Managers 6-8
Managing the General Appearance of Window Frames 6-8
Coloring Window Frames 6-10
Coloring Individual Frame Elements 6-10
Exampleo 000 6-11

Changing the Tiling of Window Frames With Pixmaps . . . 6-12

Contents-7

Frame Resources For Monochrome Displays 6-14

Specifying a Different Font for the Window Manager 6-15
The Syntax for Declaring Resources 6-16
The Syntax for the General Appearance of Elements . . . 6-16
The Syntax for Window Frame Elements of Particular
Objects0 6-16
Working withIcons 6-17
Studying Icon Anatomy e e e e e e .. 6-17
The Label 6-18
TheImage 6-18
Manipulating Icons L. . 6-19
Operatingon Icons e e e 6-20
Starting Clientsas Icons 6-20
Controlling Icon Placement 621
Changing Screen Placement 6-21
The Syntax for Icon Placement Resources 6-22
Controlling Icon Appearance and Behavior 6-22
Selecting Icon Decoration 6-23
Sizing Icons00 6-23
Using Custom Pixmaps 6-24
The Syntax for Resources that Control Icon Appearance . . 6-25
Coloring Icons by Client Class 6-26
Coloring Icon Elements Individuwally 6-26
Changing the Tile of Icon Images 6-27
The Syntax for Icon Coloring Resources 6-27
Using the Icon Box to Hold Icons 6-28
Specifying the Icon Box 6-29
Controlling the Appearance of Icon Boxes 6-29
The Icon Box Window Menu 6-30
Controlling Icons in the Icon Box 6-30
Managing Window Manager Menus 6-32
Default Menus« . . o ... 6-32
Modifying Menu Selections and Their Functions 6-34
Menu Syntaxo 6-34
Modifying Selections e e e e e e e e e 6-34
Modifying Functions 6-35
Menu Titles 6-39

Menu Selections " 6-39

Contents-8

Mnemonics and Accelerators 6-39
Changing the Menu Associated with the Window Menu

Buttono 6-39
Making New Menus 6-40
Using the Mouseo 6-41
Default Button Bindings 6-42
Modifying Button Bindings and Their Functions 6-43
Button Binding Syntaxo oL 6-43
Modifying Button Bindings 6-44
Making a New Button Binding Set 6-45
Modifying Button Click Timing 6-45
Using the Keyboard e e e 6-46
Default Key Bindings 6-46
Modifying Keyboard Bindings and Their Functions 6-48
Keyboard Binding Syntax 6-48
Modifying Keyboard Bindings 6-49
Making a New Keyboard Binding Set 6-49
Customizing the Windows Frames 6-50
Adding or Removing Frame Elements 6-50
The Syntax for the ‘clientDecoration’ and
‘transientDecoration’ Resources 6-51
Controlling Window Size and Placement 6-54
Refining Control with Window Manager Resources 6-54
The Syntax for Size and Position Refinement Resources . . . 6-56
Controlling Resources with Focus Policies 6-57
Valid Focus Policies 6-58
The Syntax of Focus Policy Resources 6-58
Matting Clientso 6-59
Coloring Individual Matte Elements 6-59
Changing the Tile of Mattes 6-60
The Syntax for Matte Resources 6-61
Switching Between Default and Custom Behavior 6-62
What’s Next o oo 6-63

Contents-9

7. Customizing Special X Environments

Using Custom Screen Configurations 7-2
The Default Screen Configuration File 7-2
Creating a Custom ‘X*screens’ File Co. 7-2

Choosing a Screen Mode Coe 7-3
Syntax for ‘X*screens’ File Lines 7-4
Determining the Number of Screen Devices Coe 7-5
Mouse Tracking with Multiple Screen Devices 7-5
Making a Device Driver File 7-5
Examples R 7-6
Defining Your Display 7-8
Specifying a Display with ‘x11start’ Coe 7-8
Finding the DISPLAY Variable 7-9
Resetting the DISPLAY Variable e 7-9
Making ‘X*.hosts’ Files for Special Configurations 7-10

Using Special Input Devices 7-10
The Default ‘X0Odevices’ File T7-11
How the Server Chooses the Default Keyboard and Pomter ..o -1
Creating a Custom ‘X*devices’ File Y 8 W

Syntax oL oL oo e 7-13
The Syntax for Device Type and Relative Position . . . 7-13
The Syntax for Device File Name T-14
The Syntax for Reconfiguring the Path to Device Flles .. 714

Selecting Values for ‘X*devices’ Files 715

Configuring an Output-Only X Window System 7-16

Examples Y £

Changing Mouse Button Actions 718
Changing Mouse Button Mapping with ‘xmodmap’ 7-19

Going Mouseless with the ‘X*pointerkeys’ File 7-20
Configuring ‘X*devices’ for Mouseless Operation 7-21
The Default Values for the ‘X*pointerkeys’ File 7-21
Creating a Custom ‘X*pointerkeys’ File 721

Syntax 722

Assigning Mouse Functions to Keyboard Keys 7-22

Examples e e e e ... T-26

Specifying Pointer Keys Coe e e T27

Examples 729

Customizing Keyboard Input e ... T30

Contents-10

Modifying Modifier Key Bindings with ‘xmodmap’
Syntax and Options
Specifying Key Remapping Expressions
Examples

Printinga KeyMap L.

Creating a Custom Color Database with ‘rgb”>
Changing Your Preferences with ‘xset”
Syntax and Options
Examples e e e e e e
Compiling Bitmap Distribution Fonts into Server Natural Format
Syntax and Options
Exampleo
Using ‘xrdb’ to Configure the X Server

How Applications Get their Attributes
Where to Find Attributes
Class Struggle and Individual Identity
The Order of Precedence Among Attributes
Naming a Client e e e e e

Syntax and Options

Examples Lo L0000 o

Using Native Language Input/OQutput
Configuring ‘hpterm’ Windows for NLI/O
Specifying an NLI/O Font

Whereto GoNexto

Printing and Screen Dumps ,
Making and Displaying Screen Dumps
Making a Screen Dump with ‘xwd>
Syntax and Options
Example 1: Selecting a Window with the Pointer .
Example 2: Selecting a Window with a Name
Displaying a Stored Screen Dump with ‘xwud’
Syntax and Options
Example
Printing Screen Dumpso L.
Printing Screen Dumps with ‘xpr’
Syntax and Options
Example o000

8-2
8-2
8-3
8-3
8-3
8-4
8-4
8-4
8-5
8-7

Contents-11

Moving and Resizing the Image on the Paper 8-7

Sizing Options 8-7
Location Options 8-7
Orientation Options 8-8
Printing Multiple Images on One Page 8-8
Printing Color Images 8-8
Printing Color Images on a PaintJet Printer 8-8
Printing Color Images on a LaserJet Printer 8-8
Where To GoNext 8-9
9. Using Starbase on X11

Using the X*screens File S e e 9-1
Monitor Type e . 9-2
Operating Modes e e e e e 9-3
Image and Overlay Planes 9-3
Server Operating Modes e e e 9-4
Example 1: Image Mode 9-4
Example 2: Overlay Mode 9-5
Example 3: Stacked Mode C e e e 9-5
Example 4: Combined Mode 9-5
Double Buffering C e e 9-6
Example 1: Image Mode e e e e e 9-6
Example 2: Stacked Mode e e e e 9-6
Example 3: Combined Mode 9-6
Screen Depth e e e e 9-6
Example 1: Image Mode - 9-7
Example 2: Combined Mode 9-7
Starting the X11 Server oL oL 9-7
Window-Smart and Window-Naive Programs 9-8
Is My Application Window-Smart or Window- Nalve" e 9-8
Running Window-Smart Programs C e e e 9-8
Running Window-Naive Programs 9-9
Creating a Window with ‘xwcreate’ 9-9
When to Use ‘xwcreate’ 9-10
Syntax and Options C e e e 9-10
Destroying a Window with ‘xwdestroy’ 9-11
When to Use ‘xwdestroy” 911

Syntax and Options 9-11

Contents-12

A.

Destroying a Window with ‘gwindstop” 911
When to Use ‘gwindstop” 912
Syntax and Options 912

Running Starbase in Raw Mode 912
Using Transparent Windows 9-13

Creating a Transparent Window with ‘xseethru’ oo 913
When to Use ‘xseethru’ 913
Syntax and Options 9-13
Example 913

Creating a Transparent Window with ‘xsetroot’ . oo 913
When to Use ‘xsetroot’ 9-13
Syntax and Options . T ¢ S
Example oo o0 ... 914

Creating a Transparent Background Color 914

Conversion Utilities . . 9-14

Converting Starbase Format to xwd’ Format usmg sb2xwd’ . 914
When to Use ‘sb2xwd’ 914
Syntax and Options 915
Example 9-15

Converting ‘xwd’ Format to Starbase Format usmg xwd2sb’ . 9-15
When to Use ‘xwd2sb’ . 9-15
Syntax and Options . 9-15
Example 9-15

Using Other Window Managers
Using ‘hpwm’ Ce e A-2

Starting ‘hpwm’ A-2

Differences Between ‘hpwm’ and ‘mwm’ A-2

Menus A-2

Icons A-3

Resources A-3

Using ‘uwm’ A-4

Starting ‘awm’ A-5

Configuring ‘uwm’ A-5

Contents-13

B. Reference Information
Glossary

Index

Contents-14

How to Improve Your X Life

Welcome to graphical user interfaces (“windows”) and to the X Window
System version 11 (X11 or X) in particular. In this chapter you’ll find out
how this manual is organized and some of the conventions it uses. You’ll also
find some tips to make learning about X11 easier and to improve your X life
thereafter.

How This Manual Is Organized
This manual is organized so that the less technical information comes first.

If you’re new to computers, new to HP-UX, or have had some window
experience—but never this much control of your screen environment—you’ll
want to read this chapter and chapters 2 and 3. You’ll also find the glossary
and the index helpful.

Chapter 1 Introduces this manual and gives some tips on HP-UX and
networking.

Chapter 2 Explains the window environment and sets the stage for
chapter 3.

Chapter 3 Provides a beginner-level introduction to using the X Window
System.

If you're a system administrator or programmer—someone familiar with
computers and how they operate—you’ll probably be more interested in the
more technical information in the second half of this manual.

Chapter 4 Explains how to run programs from the command line.
Chapter 5 Discusses customizing the X environment to suit your personal

needs or the needs of the users who use your system.

How to Improve Your X Life 1-1

Chapter 6 Offers a detailed explanation of the OSF/Motif Window

Manager.

Chapter 7 Provides information about customizing special X
environments.

Chapter 8 Discusses printing and screen dumping,

Chapter 9 Discusses the use of Starbase graphics.

Appendix A Discusses other window managers.

Reference Contains “man” pages—the definitive description—for current
X clients.

But please, System Administrator, don’t just skim the man pages, tweak the
sys.Xdefaults and system.mwmrc files, and then bury this manual on a
bookshelf. Your users, the people who depend upon you for support, could use
this manual to make life a little easier for themselves—and for you. Make it
available to them and encourage them to read it. As they become self-sufficient
within their window environment, your support tasks become easier.

Ultimately, whether you’re a new user or an experienced user, the purpose of
this manual is to improve your X life.

1-2 How to Improve Your X Life

Conventions

As you read this manual, notice the following typographical conventions:

Table 1-1. Typographical Conventions

If you see ...

It means ...

computer text

 This text is displayed by the computer or text that you type

| login:

exactly as shown. For example,

is a login prompt displayed by the computer.

ttalic text

' example,

v hpterm -fg color

A book title, emphasized text, or text that you supply. For

means you type “hpterm -fg” followed by a color you choose.

You press the corresponding key on the keyboard. For example,

(CTRL} (Left Shift} (Reset)

means you hold down the key, the key, and the
all at the same time.

' An optional parameter that can be left off if you don’t need that

[1

functionality. For example,

xload [-rv] &

| means that you must type “xload” but don’t have to type “rv”.
{f ¥ ' A list containing mutually ezclusive optional parameters. For

 example,

on
xset r
{ off }
' means. that option r can be set to either on or off, but not both.
bold text | The definition of this term follows. Additionally, the term is defined

in the glossary.

How to Improve Your X Life 1-3

Also, you can use the X Window System with either a two- or a three-button
mouse by observing the following conventions:

Table 1-2. Mouse Buttons and Their Locations

If you see ... On a 2-button mouse press . .. On a 3-button mouse press ...
Button 1 The left button. The left button.
Button 2 Both buttons simultaneously The middle button.
Button 3 The right button. The right button.

System Administrators, these are the default mouse button settings and can be
changed as described in chapter 7.

Running HP-UX: Some Tips

If you are new to HP-UX and to the X Window System, take heart: You're not
alone. A wide variety of users, many just like yourself, are currently learning
HP-UX and X11. The next several paragraphs provide you with information
and tools to facilitate the initial stages of learning.

What Is HP-UX and the X Window System?

HP-UX is Hewlett-Packard’s implementation of the UNIX operating system.
The operating system is the software that controls the operation of the
computer system. HP-UX is a multi-user, multi-tasking environment. A
multi-user environment means more than one user can be on the system at the
same time. A multi-tasking environment means that each of those users can
run more than one program at a time.

The X Window System is a window environment. It turns your screen into a
“root window” or “desktop” on which you can display smaller windows, each

one the equivalent of a full-sized display terminal. Within the X11 environment

you can run multiple tasks, viewing their progress in separate windows.

1-4 How to Improve Your X Life

o

Why Background Processing Is Important

Your programs can run as either foreground or background processes. In any
X11 terminal widow, you can only run one program at a time as a foreground
process, but you can run many programs as background processes. To run a
program as a background process, add an ampersand (&) to the end of the
command line that starts the program. The ampersand tells the system that
the program should be run in the background. This leaves the foreground free
for you to issue more commands.

Take, for example, the following command:
xclock &

This command starts a clock. The & tells the system to display the clock,

but as a background process, so you can use the foreground to enter more
commands. Without the &, the clock would still display, but in the foreground.
The window from which you issued the command would ignore everything
else, including your keyboard commands, as long as the clock remained

the foreground process. This could prove inconvenient, even to inveterate
clock-watchers.

If you forget an &, you will need to stop that program to regain control of the
foreground—a task not always easy to accomplish (see either “Exiting from the
X Window System” in chapter 3 or “Stopping Programs” in chapter 4).

One last note on foreground and background: Don’t confuse foreground and
background processing with foreground and background color. The foreground
and background that you process are not the same foreground and background
that you color. Foreground and background processes are activities of the
computer; the foreground and background colors are graphical elements that
display on the screen.

Case Sensitivity and Other Typographical Tips

HP-UX distinguishes between uppercase and lowercase letters. A file named
.xdefaults is not the same file as .Xdefaults. Use uppercase letters where
indicated and only where indicated.

How to Improve Your X Life 1-5

Also, the number “1” (one) looks like a lowercase “1” (el) to our human eyes.
The system, however, can readily distinguish the difference and often seems to
do so with a vengeance.

Don’t confuse the “0” (zero) with the upper case “O” (oh) for the same reason.

White space (extra spaces or tabs) at the end of a command line in a text
file sometimes alters the meaning of the command. Files such as .rhosts are
especially vulnerable. After modifying a file, check for unwanted white space.

And finally, watch your spelling.

Working with HP-UX Manuals

HP-UX manuals typically have a section devoted to reference information. This
section contains “man” (manual) pages that provide specific information about
a command, function, or program. The man page is the most definitive source
of information. You will find man pages in the reference section at the back of
this manual.

Logging In to HP-UX

Most HP-UX systems require you to log into a system before you gain access to
the resources available on that system. The administrator of the system must
provide you with a login account. When you have a login, you will be able to
log into that system by providing your login name and your personal password.
When you are logged in, you may use the resources available such as the X
Window System.

Note that on some systems the system administrator may have configured your
login process so that you automatically start your X environment.

For More Information

Several beginner’s guides come with your computer system.

1-6 How to Improve Your X Life

Table 1-3. Beginner’s Guides

To learn about . .. Look through this guide ... HP Part Number
Using the HP-UX operating A Beginner’s Guide to HP-UX | 98594-90006
system concepts and commands.
Using shells to increase A Beginner’s Guide to Using 98594-90008
performance. Shells
Editing commands for the vi A Beginner’s Guide to Text 98594-90010
editor. Editing
Customizing your own X A Beginner’s Guide to the X 98594-90002
Window System environment. Window System

If you are new to the system, taking the time to study these guides will help
clarify questions you may have.

There is also a great deal of information available about the HP-UX operating
system in the HP-UX Reference volumes that accompany the operating system.

Additionally, information about programming in the X Window System
environment is available in the following manuals:

Table 1-4. Reference Manuals

To learn about ... Look through this manual ... |HP Part Number
Writing and using widgets in Programming with the Xt 98794-90008
application programs. Intrinsics

HP OSF/Motif Programmer’s 98794-90005
Guide
Fortran Bindings and Native Programming with Xlib 98794-90002
Language I/O systems.
Writing graphics programs for X. | Programmaing with Xlib 98794-90002

These manuals contain information about the HP OSF/Motif user
environment.

m HP OSF/Motif Programmer’s Guide.

How to Improve Your X Life 1-7

m HP OSF/Motif Programmer’s Reference.
m HP OSF/Motif Style Guide.

Finally, depending on your needs, the following books about the X Window
System might prove useful:

m Introduction to the X Window System by Oliver Jones. Prentice Hall,
Englewood Cliffs, NJ:1989.

m Xlib Programming Manual for Version 11 by Adrian Nye. O’Reilly and
Associates, Newton, MA:1988.

m XIlib Reference Manual for Version 11 edited by Adrian Nye. O’Reilly and
Associates, Newton, MA:1988.

m X Window System User’s Guide by Tim O’Reilly, Valerie Quercia, and Linda
Lamb. O’Reilly and Associates, Newton, MA:1988.

m X Window Systems Programming and Applications with Xt by Douglas A.
Young. Prentice Hall, Englewook Cliffs, NJ:1989.

Where to Go Next

Now that you’ve finished these preliminaries, you have a choice. If you feel
comfortable with (or aren’t interested in an explanation of) graphical user
interfaces, skip chapter 2 and read chapter 3 on how to use the X Window
System.

If you’ve had some experience with graphical user interfaces and the X Window
System in particular, you might want to skip all the way to chapters 4 and 5 to
find out how to run X11 clients and customize your X11 environment to your
individual needs.

1-8 How to Improve Your X Life

2

Understanding Window Systems

This chapter is written for new users. If you’re not familiar with HP-UX or
window environments, this chapter’s for you. It describes the following key
elements:

m Basic window concepts.
m A typical X Window System environment.
m An example of a distributed computing environment.

This chapter demonstrates the power and the flexibility of the X Window
System.

What Is the X Window System?

The X Window System is a graphical user interface, a way of communicating
with your computer using visual images (graphics). You can better understand
the importance of the X Window System and why its possibilities are so
exciting if you compare it to the “traditional” user interface, the command-line
prompt.

In contrast to the austerity of the command-line prompt, the X Window
System offers a visually rich connection to your computer. This connection,
the user interface, is characterized by easily recognizable graphical features:
windows, selection menus, and icons.

X11 surrounds your interaction with the computer system in a visual

metaphor more intuitively meaningful—especially to novice users—than

the command-line prompt with its often esoteric commands and obscure ,
parameters, for example, “pushing” a button. X11 provides you with a friendly,
easy-to-use work environment.

Understanding Window Systems 2-1

X11 Is Based on the Server-Client Interaction Model
The X Window System is based on a server-client interaction model.

The server is really what you “start” when you “start X11.” The server
controls all access to input devices (typically a mouse and keyboard) and

all access to output devices (typically a display screen). You can visualize

its position in the scheme of things by thinking of it as standing between the
programs you run on your system and your system’s input and display devices.

Bisplay LAN Clients Terminal-based
fApplications

Hindow

Manager

Client

Program

X Server

Graphical Terminal-based
Front End Program
Terminal Terminal-based
Emulator Program

Figure 2-1. The Server Controls Display Access

A client is any program written especially to run with the server. Another way
of looking at it is to view the client as “window smart.” Clients know about
windows and how to make use of them. All other programs are non-clients,
programs that don’t know how to make use of windows.

2-2 Understanding Window Systems

Multi-Tasking Makes X11 a Powerful Tool

Part of the X Window System’s power comes from the computer system’s
multi-tasking ability. Multi-tasking is the ability to execute several programs
simultaneously. Each program is a separate task (process). The X Window
System brings multi-tasking out of the realm of the power user and into

the hands of the novice user in search of increased efficiency. In your X11
environment, you run each program in a separate window as a separate process.
Windows may overlap on the screen, but their processes don’t interfere with
each other.

For example, you could have the system recalculate a large spreadsheet in one
window while you shift your attention between editing a monthly report in a
second window and answering your electronic mail in a third. Each program
normally has a main window for visual interaction, and each window has its
own input and output.

You focus your attention on a particular window by moving the mouse pointer
into that window and pressing button 1. The window thus pointed to becomes
the active window. While you focus on one window, other windows continue
running unattended or wait for your input.

Multi-tasking is possible in part because of the way the computer system
divides all processes into foreground processes and background processes.
Background processes are the ones that run unattended or wait until they

get your input. You can have as many background processes running in a
window as you like. A foreground process is the process that has the window’s
attention at the moment. You can have only one foreground process running in
each window.

The ampersand (&) at the end of a command line initiates background
processing.

X Allows Both Local and Remote Access

Any computing environment allows you local access, the ability to run

a program on the computer in front of which you’re sitting. Networked
computing environments also allow you remote access to programs, the ability
to run a program on a computer other than the one at which you’re sitting.

Understanding Window Systems 2-3

Using the X Window System, you can run programs both locally and remotely
at the same time. You also have greater control over where the output displays.
If you wish, you can run a program locally and display the output on the
screen of a remote system; or the opposite, run a program remotely and display
the output in a window on your screen; or run a program remotely and have it
display on yet another remote screen.

The X Window System Allows Multi-Vendor Networking

A final feature of X11 worth mentioning is the X Window System’s acceptance
as an industry standard for UNIX operating system network protocol. Since
all X Window System hardware and software vendors communicate using

the X protocol, programs from different vendors can be run remotely and

be viewed on your local system. Thus, computer networks composed of
hardware and software from multiple vendors, instead of being a “nightmare
of incompatibility,” become powerful resources for specialized applications,
allowing the user to select the best hardware and software for the application
without compromising performance for compatibility.

The Parts of a Typical X Window System

Your personal window environment can be relatively simple or rather elaborate.
The details depend on your personal computing needs, the programs you use,
and how you customize three X Window System configuration files. However,
all X Window System environments have the following features in common:

m Computer hardware (a system) on which to run the software.

m An X server program to control communication between the display and
client programs.

m A window manager to control the display’s window environment.

m Application programs to provide useful services.

2-4 Understanding Window Systems

The Computer Hardware System

The hardware system consists of several components:
m System Processing Unit (SPU).

m Hard disk.

m Keyboard.

m Mouse, or other pointing device.

m Display screen.

m Connection to a Local Area Network (LAN).

The SPU Does the Computing

The System Processing Unit or SPU is the “brains” of the computer. The SPU
contains the logic circuitry, which is driven by the software and performs all the
processing that takes place. The SPU of your system runs the X server that
provides your window environment, takes care of foreground and background
processing, and controls local and remote accessing of your system’s resources.
Using X, you can run programs that are stored on your own hard disk (local
processing) or that are stored on someone else’s hard disk using their SPU
(remote processing).

The Hard Disk Stores Data

The hard disk stores programs and data files. No processing takes place on the
hard disk, only storage. Some HP 9000 Series 300 and Series 800 configurations
are called diskless clusters because groups of users share the same hard disk.

The Keyboard Enters Text

The keyboard is an input device, a device used to type information into the
computer. This information could be the text of a letter or the next command
that the computer should execute, depending on whether you type the text into
a file or on the command line.

Although the keyboard is frequently used in conjunction with a mouse, it does
not need to be. You can configure your X11 environment so that you can use
the keyboard for both text entry (its usual purpose) and for pointing and

Understanding Window Systems 2-5

selecting (the mouse’s usual purpose). For example, this mouseless operation
would be beneficial in any situation where desk space was at a premium.

The Pointing Device (Mouse) Points and Selects

The keyboard enters characters; a pointing device points and selects. A mouse
is the most used pointing device. Sliding the mouse on your desktop moves
the pointer, the current screen location of the mouse, on the screen. Using the
mouse, you can point to an object on the screen, for instance a window, and
select an action to perform, such as resizing. Selection is made by pressing
button 1 on the mouse. As mentioned, however, mouse movements and button
presses can be associated with keyboard key presses for mouseless operation.

The Screen Displays Output

The principal output device for the X Window System environment is the
display. A typical display consists of one physical screen per mouse and
keyboard. However, depending on the specialized nature of the application, a
display may include as many as four physical screens, all using the same mouse
and keyboard.

The screen is the physical CRT (Cathode Ray Tube) that displays what

you type on the keyboard. The screen also shows you the position of the
pointer and windows, and provides you with visible indications of the status of
executing programs.

Conceptually, the screen becomes the root window when you start the X
Window System. The root window contains all the windows, menus, and icons
that compose the visual elements of your X11 environment.

Technically, the screen is known as a bitmapped device because the graphical
elements (windows and icons) that it displays are stored by the computer as
a bitmap, a pattern of bits (dots) that can be readily displayed as graphical
images.

The LAN Connects to the Network

The LAN is composed of hardware and software. The hardware part connects
your computer system physically (using a cable) to a network that includes
other computer systems at your site and could encompass other networks

2-6 Understanding Window Systems

at different locations. The LAN enables you to take advantage of remote
processing capabilities of X.

Other Pointing Devices

Although the mouse is the most common pointing device, the X Window
System display server (the program that “runs” X on your system) supports
other HP-HIL (Hewlett-Packard Human Interface Link) pointing devices, for
example a digitizer tablet or track ball. References in this manual to mouse
actions apply also to corresponding actions with other HP-HIL pointing
devices.

The X Server Controls Communication

The server is the program that controls the screen, keyboard, and mouse, and
processes all communication requests. The X server is really what runs when
you “run X11.” The server updates the windows on the screen as a client
generates new information or as you enter information through an input device.
All client programs communicate through the server.

Because the server controls communication with the display screen, it is
sometimes called the display server. Either name is correct.

The Window Manager Controls Your Windows

The window manager is your main means of dynamically controlling the
size, shape, state (icon or normal), and location of the windows on your
screen. Several different window managers exist; the window manager for
the Hewlett-Packard implementation of the X Window System is called the
OSF /Motif Window Manager (mwm). The window manager includes:

B menus
m icons

s window frames

The Window and Root Menus

One way that you can control the operation of your window environment is
by choosing an action from a menu. A menu is a indow that contains a list

Understanding Window Systems 2-7

of selections—exactly like a restaurant menu. The window manager has two
menus:

Window menu One for each window on your screen. A window menu
controls the particular window to which it is attached.

Root window The menu for the root window. The root menu controls

menu actions that are generic and refer to no particular window.

The following figure shows a window with the window menu displayed and the
“maximize” selection highlighted.

ur excellent suggestions. [will pass them
ers.

Figure 2-2. The Window Menu with “Maximize” Selected

You can configure your window manager to make life easier for yourself. For
example, you can add a selection to the root menu that enables you to log
onto a remote host and run an application automatically. You can also create
submenus of related activities. One popular submenu is a list of remote hosts
to log onto. Chapter 6 of this manual discusses configuring the OSF/Motif
Window Manager. Appendix A discusses other window managers, hpwm and
uwm, which were used in previous releases of the X Window System.

Icons

2-8 Understanding Window Systems

Because your display will often contain several windows, you may find it
convenient to set aside a window you’re not currently using without stopping
the processing in that window. You do this by changing the window into an
icon, a small, easily identifiable graphic symbol that represents the window but
takes little space on the screen.

The contents of an iconified window aren’t visible. But you can quickly convert
the icon to its original window representation whenever you wish to use the
window again. Any processing that was occurring in the window as it was
iconified continues as long as it doesn’t require additional input from you. You
won’t be able to see output or enter input until you change the icon back into a
window.

The figure below shows several icons, each representing a different type of
client.

Figure 2-3. Icons Replace Windows Giving You More Room

Understanding Window Systems 2-9

Window Frame Decoration

The window manager provides a functional frame around each window in
the root window. The frame, sometimes called window decoration, consists
of graphical control devices that enable you to display the window menu,
maximize or iconify the window, or move and resize the window.

Application Programs Run in Your X Environment

An application program is a computer program that performs some useful
function like word processing or data base management. The applications you
run while you use X may be stored on the hard disk attached to your system
or on the hard disk of a remote system. The X11 server communicates with
application programs just as easily over the LAN as locally.

You can sort all application programs into two categories:

m Those that know about windows and incorporate windowing behavior into
their own behavior (client programs).

m Those that don’t know about windows and think that they must always be
running on a separate terminal (non-client programs).

Window-Smart Programs Are Called Clients

A client is a program written especially for the X Window System. Clients are
referred to as window-based programs. The window manager that controls the
windows on your screen is a client. The windows themselves are clients. Clients
are “smart” enough to create their own windows if they need to display output.
Note, however, that not all clients create windows. Some clients (like xwininfo
and xmodmap) are content to use an existing terminal emulation window in
which to display their output.

Terminal-Based Programs Must Be Fooled

Non-client programs know nothing about windows. They are designed to

run alone on display screens or “terminals” and are, therefore, referred to

as terminal-based programs. Terminal-based programs must have windows
created for them so that they can run in a window environment. They are thus
“fooled” into operating in the window environment.

2-10 Understanding Window Systems

You can operate terminal-based programs in the X Window System by using
a client program called a terminal emulator to provide a window. You start
the non-client program in that window. The terminal emulator “fools” the
non-client into thinking that it is running on a “real” terminal instead of a
window imitating a terminal. This has led some people to describe non-client
programs as “window dumb.”

The X Window System provides two terminal-emulator clients: hpterm and
xterm. When either is run, it creates a window to emulate a display terminal.
A terminal-based program runs happily in this window, acting exactly as if
running on a terminal.

The following diagram shows the components of a system running X.

Dear Al:

Just got the latest report on your last quarter’s
activities. Sure looks good to me,

Figure 2-4. Typical Components of an X Window System

Understanding Window Systems 2-11

The Distributed Computing Environment

A Distributed Computing Environment (DCE) is a group of computer systems
joined together into a network. Resources resident on one system are available
to all systems. As mentioned earlier, a system that uses X11 is usually
connected to a LAN. The LAN provides the link to programs that are resident
on physically separate (remote) systems.

X11 really doesn’t care where a program is—it simply communicates to the
program via the LAN connection. This structure permits you to operate $S300
and S800 systems at a strictly local level with all client programs residing
locally, or at a networked level with some programs running at the local level
while others run on remote systems.

In addition, another system on the LAN can run programs that reside on your
S300 or S800 and direct the visual output to any screen on the network.

A distributed computing environment, in other words, enables the best possible
allocation of processing resources within the existing hardware environment.

The figure below shows a distributed computing environment that provides a
number of resources to users who are connected to the LAN and running X.

2-12 Understanding Window Systems

.

P50
HP 340
Horkstation

O—

o,
HP 376
Horkstation HP

HP 848
Graphics

Station

Print

S ‘ Server
Display !
1

Figure 2-5. A Typical Distributed Computing Environment

As the figure indicates, if you use a system running X11 and connected to

a LAN, you have a multitude of resources available. The following sections
provide a practical example of how the above environment and the resources
contained therein could be used.

Workstations Provide Local and Remote Processing

Two workstations are pictured in the figure, an HP 9000 Series 330 and an an
HP 9000 Series 350.

Both workstations can use clients that reside either locally, on their own hard
disks, or remotely, on the hard disk of another system (for example the Series
850 application server.) The workstations illustrate the capability of a single
system to operate either locally or remotely.

Understanding Window Systems 2-13

Application Servers Handle Process-Intensive Applications

One of the HP 850s shown in the figure is an application server. An
application server is a computer that provides the processing power and
memory necessary to run large, processor-intensive applications.

A typical user of such an application would be Hank, who works for a large

oil company. Hank is currently involved in the search for new oil resources in
Alaska. Many variables are considered in the attempt to locate potential oil
fields. Hank uses a simulation program that mathematically manipulates all of
these variables to produce data that indicates the potential for a certain area.
These computations require a tremendous amount of memory, disk space, and
processor time.

With a distributed computing environment, Hank can sit at his desk and use
his personal workstation to log into the HP 850 application server and enter
the necessary data. The actual simulation program and the necessary data
files reside on the HP 850. Hank runs the simulation using the processing
power of the application server. He has the output directed to a window on his
workstation while he is busy performing tasks locally in other windows until
the necessary simulation information is available.

Hank is only one of many employees to take advantage of the processing power
of the application server. Other employees in the same department or even in a
different building can also log in and use the system.

File Servers Supply Data Storage

The other HP 850 shown in the figure is a file server. A file server is a
computer that controls the storage and retrieval of data from hard disks. A file
server means less storage space is required on an individual’s local computer. It
also provides a relatively inexpensive and quick backup facility.

Let’s say Alex is a writer who is responsible for the content of several chapters
of a large manual. She works at her desk using an HP 330 as a writer’s station
and at any given time is working on one of several different projects that total
10 to 15 megabytes of storage on a hard disk. Using the HP 850 file server,
she could store her files on a master disk drive and check out the chapters she
needs to work on. This leaves a backup of the files on the file server. The file

2-14 Understanding Window Systems

server can thus be used to maintain current backups by transferring updated
files to it on a regular basis.

At any given time, Alex will only have a few chapters stored on her own disk
drive; those chapters she is currently working on. If she finds that she needs a
copy of another chapter that is not currently residing on her disk, she requires
only moments to transfer a copy from the main disk.

Another use for a file server is to serve as a hub for diskless workstations.
You can have a cluster of several diskless workstations connected to a single
hub with a large disk. Each workstation, or node, needs a certain amount
of individual space on the disk, but all nodes can share the system and
application software, eliminating the need for local system storage and thus
saving a considerable amount in overall storage requirements.

Print Servers Control the Printers

The HP 835 shown in the figure has several printers attached to it and acts as
a print server, a computer that controls spooling and other printing operations.
Page formatters and page composition programs reside on the print server and
are invoked with the proper commands. When you need a document printed
using a particular type of printer, you send it to the print server with the
appropriate instructions, and the task is accomplished. This permits a large
number of individuals from anywhere in the distributed computing environment
to efficiently share printer resources.

If Alex needs a copy of a chapter quickly printed for an immediate review, she
instructs the HP 835 to print the chapter using the fast dot-matrix printer. If
she needs a letter-quality copy of a document containing elaborate graphics,
she routes the letter to the laser printer. For those manuals that need to be
typeset, the print server can also drive a typesetter. Alex would again simply
direct the appropriate command to the print server to run the document
through the typesetter.

Understanding Window Systems 2-15

Graphics Station for Specialized Graphics Applications

Certain applications are designed to take advantage of graphics accelerators
in order to speed up the presentation of graphics on the screen. Generally,
engineers working with CAD (Computer-Aided Design) applications are the
major users of graphics accelerators. Hewlett-Packard supports graphics
acceleration with a graphics library called Starbase. The HP 840 shown in the
figure has two high-performance graphics subsystems attached to it. Each
subsystem is powerful enough to run the X Window System while running a
Starbase application.

Anne is an engineer who is working on a project involving the design of a new,
high-speed sailboat hull. The CAD program she uses is very expensive and
requires graphics acceleration to accomplish complex shading. When Anne
wants to work with the program, she can move to the graphics station where
she can use multiple windows provided by X with the CAD program running in
one of the windows.

The graphics station permits a larger number of people to share the expensive
hardware and software resources required by a CAD/CAM station. Tasks
that engineers may have that do not require graphics acceleration can be
accomplished at their desks on a more typical workstation.

Multi-Vendor Communications

Another advantage of DCE is its ability to allow computers manufactured

by different vendors, running different operating systems, to communicate

with each other over the LAN. If you are using a computer made by '
Hewlett-Packard, you can communicate over the LAN directly with a computer
made by Sun, DEC, IBM, or a variety of other manufacturers supporting X, as
long as each is running the X Window System and connected to a LAN using
the Ethernet protocol standard.

The diagram below shows a multi-vendor environment of computers running
different operating systems. Communication over the LAN is a simple task as
long as they are all running X11.

2-16 Understanding Window Systems

HF 3808 HP 9808
858 APOLLD 370 SUN

LAN . I

DEC HP 9866 IBM
349

Figure 2-6. Multi-Vendor Communication Is A Benefit of X11 DCE

Where to Go Next

You should continue to chapter 3 to learn how to use your X Window System.
Chapter 4 contains information about running client programs from the
command line, while the chapters following contain information on customizing
your window system environment.

Understanding Window Systems 2-17

3

Using the X Window System

This chapter covers the basics of window operation. It shows you how to use
X once it’s been installed on your system. You’ll learn how to perform the
following tasks:

m Start the X Window System.

m Create, move, resize, and “shuffle” windows.
m Iconify a window and normalize an icon.

m Display menus and make selections.

m Stop programs and correctly exit your X environment.

Starting the X Window System

Before you start the X Window System, you must be logged in to your
computer system. Log in using your normal procedure.

Note The X Window System can’t run on a system that’s
i already running HP Windows/9000. If you are running HP
% Windows /9000, you must exit from that window system before

you start X. (HP Windows/9000 can be installed on your
system; it just can’t be running when you start X.)

Your system may be configured to start X11 as part of the login procedure. If
so, skip the rest of this section and the next and start reading at “What to
Expect When X Starts.”

If your system is not configured to start X11 at login, log into the system in
the usual way and type the following command at the command prompt:

Using the X Window System 3-1

xilstart

You should start the X Window System just once. With X11 running, you
should not execute the xiistart command again. Starting X11 and then
starting it again while it is still running may cause undesirable results.

Note, however, that you can restart the window manager and refresh the screen
at any time.

Command-Line Options for x11start

In most cases, you will find it convenient to establish environment options in
configuration files in your home directory. However, if you don’t start X11
automatically at login, you can include environment options on the command
line after the x11start command. The syntax for this is:

x1istart [-clientoptions) -- [{path}/server| | :display] [-options)

Client Options

Client options pass from the x11start command line to all clients in the
.x11start file that have a $@ parameter. The options replace the parameter.
This method is most often used to specify a display other than the usual one
on which to display the client. You can, however, use the command-line option
to specify a non-default parameter, such as a different background color.

Server Options

Server options are preceded with a double hyphen (——). If the option
following the double hyphen begins with a slash (/) or a path and a slash, it
starts a server other than the default server. If the option begins with a colon
followed by a digit (:#), it specifies the display number (0 is the default display
number). Additional options specified after the server or display refer to the
specified server or display. See the XSERVER page in the reference section for
more information on server options.

Examples
The examples below illustrate starting the X Window System in different ways.

xllstart The usual way to start X.

3-2 Using the X Window System

xllstart -bg Blue Gives clients followed by $@ a blue background.
xlistart —— /X2 Starts server X2 rather than the default server.

Starting X on a Multi-Seat System

A multi-seat system (a system with more than one display, keyboard, and
mouse) requires modification of two X11 configuration files, to allow for more
than one display seat. These files, X*screens and X*devices (where * is the
number of the display), are located in /usr/1ib/X11. Each seat must have its
own X*screens and X+devices files. If you have a multi-seat system but have
not configured it, see your system installation or configuration manual for more
information. Also see “Defining Your Display” in chapter 7.

Starting Seat 0
To start X11 on seat 0 (display 0) of a multi-seat system, log in as usual and
type:

xilstart

Seat 0 uses the /usr/1ib/X11/X0screens and /usr/lib/X11/X0Odevices files
to configure its output and input devices. These files are supplied with the
system, but you must still match them to your hardware configuration.

Starting Seat 1

To start X11 on seat 1 (display 1) of a multi-seat system, log in as usual and
type:

xlistart —— :1

Here the —— signifies starting the default server while the :1 specifies

sending the output to seat 1. Seat 1 uses the /usr/1ib/X11/X1screens and
/usr/1ib/X11/X1devices files to configure its output and input devices. If
your system has a multi-seat configuration, you must create these configuration
files using the XOscreens and XOdevices files as models.

Using the X Window System 3-3

What to Expect When X Starts

Whether you start the X Window System from the command line or
automatically from a login file, x11start always executes the same sequence of
steps.

1. If necessary, it adds the path to X11 programs (/usr/bin/X11) to your PATH
variable.

2. It looks in your home directory for a .x11start command file to read. If it
doesn’t find one, it reads usr/1ib/X11/sys.x11istart instead.

3. It starts xinit, which starts the server and any clients specified in the
.xl1start command file.

4. Tt looks in your home directory for a .Xdefaults configuration file to read.
If it doesn’t find one, it reads /usr/1ib/X11/sys.Xdefaults instead.

5. It reads the configuration file named by the $ENVIRONMENT variable,
.Xdefaults-hostname if the variable doesn’t exist.

You won’t notice any effect from issuing the command until the X display
server starts.

The Server Creates the Root Window

When x11start starts the server (the program that controls the operation of
your keyboard, mouse, and display), your screen will turn gray. This means
that the screen has now become the root window, the backdrop or “desktop”
on which the windows and icons of your environment appear. Although you
can completely cover the root window with clients, you can never cover a
client with the root window. The root window is always the backdrop of your
window environment; nothing gets behind it.

In the center of the root window is an hourglass. This is the pointer and marks
the current screen location of the mouse.
A Terminal Window Appears on the Root Window

A short time later the pointer changes to an X, and a terminal window appears
at the top of your display (if you’re using the default .x11start file). This
window is under the control of a window manager. If you use the OSF/Motif
Window Manager (mwm), your window has a three-dimensional frame. This

3-4 Using the X Window System

frame contains window manager controls. (The HP Window manager (hpwm)
also provides a frame; the uwm window manager does not. Refer to appendix A
for additional information about hpwm and uwm.)

Figure 3-1. The Default X Environment: ‘mwm’ and One Window

The window that x11start creates is an X11 client called hpterm and is called
an hpterm window to distinguish it from other types of window clients. The
window contains a command-line prompt and behaves exactly like the screen
of a standard HP terminal. You can think of this window as “a terminal in a
window.”

Move the mouse. The pointer moves on the screen. When the pointer is in the
root window, it has an X shape. However, when you move the pointer to a
terminal window, the pointer changes to an arrowhead (when on the window
frame) or an I (when in the interior of the window).

With the OSF/Motif Window Manager, when you press and release button
1 while the pointer is in a terminal window, the window becomes the active

Using the X Window System 3-5

window. When a window is active, its frame changes color. You’ll discover that
you can’t type in a terminal window unless the window is active.

The active window is the terminal window where what you type on the
keyboard appears. Your input always goes to the active window.

If there is no active window, what you type is lost.

The program running in the active window decides what to do with your typed
input. Frequently the program will use a text cursor to show where your typed
input will be displayed.

What to Do If X11 Doesn’t Start

Table 3-1. Possible X Window System Start Problems

If this happens ... You should do this ...

The message command not found appears. | Check your spelling and reenter the start
command.

The root window displays for a moment, |Press the key to bring back your
but then goes blank. original command-line prompt and see
below.

The root window displays, but no pointer [Press (CTRL) (Left Shift] (Reset) all at the
appears. same time. This brings your original
command-line prompt back. See below.

The root window and pointer display, but | Press and hold button 3. If a menu
no terminal window appears. appears, open a window. Otherwise,
press (CTRL) (Shift) (Reset} and try
restarting X, then see below.

The terminal window displays, but Move the pointer into the window and
what you type doesn’t appear after the click (press and release) button 1, then
window’s command prompt. type.

If you encounter problems starting X11 for the first time, check the following
areas:

'm Check the X11 start log in your home directory for clues by typing

3-6 Using the X Window System

more .x1istartlog

m Check that the correct directory is in your PATH statement. If you do not
have an entry for /usr/bin/X11:., x11start will add that entry before
/usr/bin:. in the path. You can be sure that the entry is always there by
adding it to the path yourself. To check the PATH variable, type

m Check that the DISPLAY environment variable is set correctly. If you do not
already have an entry for either local:0.0 or host:0.0 (where host is the
hostname of your system), X11 will add it for you when X11 starts. You can
add the entry yourself. To check the DISPLAY environment variable, type:

m Check that you have the correct permissions for the .x11start file in your
home directory. Type:

11 .xlistart

The resulting permission should be at least:

m Check the .x11start file in your home directory for errors. Compare it with
the /usr/1ib/X11/sys.x11start file.

If none of the above seems to help, or you’re not sure how to proceed, see your
system administrator.

Working With Windows

This section explains features of the OSF/Motif Window Manager (mwm). If
you have another window manager, some features may work differently from
what is described in this manual. Appendix A explains differences between
mwm, hpwm, and uwm window managers.

To check which window manager you are using:

1. Move to your home directory by typing
d

Using the X Window System 3-7

2. Type:
more .Xilstart

If the system replies “no such file or directory”, type:

more /usr/lib/sys.X1istart

Table 3-2. Which Window Manager Are You Using?

You are using
If you see this line ... this window manager . ..
mwm & OSF/Motif Window Manager
hpwm & HP Window Manager
uwm & uwm window manager

In the typical X environment, you have two tools to control window operations:
m The mouse.
m The window manager.

For most window operations, you’ll use a combination of the window manager
and mouse. (If you lack the space on your desktop, or feel more comfortable
with a keyboard, you can configure your keyboard to take the place of the
mouse.)

Which Mouse Button Does What

The X Window System works with either a two-button mouse or a
three-button mouse. If you have a two-button mouse, you can emulate a
three-button mouse. The following table explains which button is which.

Table 3-3. Which Mouse Button Is Which

To press this ... | On a 2-button mouse press ... On a 3-button mouse press ...
Button 1 the left button the left button
Button 2 both buttons the middle button
Button 3 the right button the right button

3-8 Using the X Window System

Besides using the mouse to point with, you use the mouse buttons to select an
operation to be performed on the object pointed to. Buttons have the following
actions associated with them:

Press To hold down a button.
Click To press and release a button without moving the pointer.
Double-click To click a button twice in rapid succession.

Drag To press and hold down a button while moving the pointer.

The Anatomy of an mwm Window Frame

The OSF /Motif Window Manager surrounds each window on the root window
with a functional frame. Positioning the pointer on a part of the frame and
performing a mouse button action will execute the function of that part of the
frame.

Window Menu Minimize

Title Bar Maximize

Resize
Border

NN RXRKXK NN KRR FRKN
=§==‘ﬁ=g=ﬂ=::===%h

ERARE;
Ere

i

HE

e e e

Figure 3-2. The Window Manager Surrounds a Window with a Frame

Using the X Window System 3-9

The parts of the mwm window manager, their functions, and the required mouse
operations are listed in the following table.

Table 3-4. Window Frame Parts and What They Do

Frame Part

Function

Mouse Action

Title area

Move a window.

Press and drag button 1.

Window menu
button

Display a window menu.

Press button 1.

Window menu
button

Select a window menu item.

Press and drag button 1.

Window menu
button

Close a window.

Double press button 1.

Minimize Iconify a window. Press button 1.
button

Maximize Expand window to maximum Press button 1.
button size.

Frame border

Stretch or shrink a window
horizontally, vertically, or

diagonally (in two directions).

Press and drag button 1.

Frame and Keyboard focus selection. Press button 1.
window

Frame and (On focus selection) Top Press button 1.
window window.

Activating a Window

You make a window active by moving the pointer to any part of the window
and clicking button 1 of the mouse. When a window is active, you can interact

with it.

3-10 Using the X Window System

Displaying and Selecting from the Window Menu

Every window has a window menu. The window menu button of a window is
in the upper left corner of the window frame next to the title bar. You can
display the window menu at any time by pressing button 1 with the mouse
pointer on the window menu button.

ur excellent suggestions. | will pass them 3
ers.J]

Figure 3-3. Every Window Has a Window Menu

There are three ways to display and use window menus.

Using a Sticky Window Menu

A sticky menu stays displayed until you make a choice. To display the window
menu as a sticky menu:

1. Position the pointer on the window menu button.

2. Click button 1.

3. Move the pointer to the selection you want to choose.
4

. Click button 1 on that selection. The window menu will disappear and the
desired action will take place.

Using the X Window System 3-11

Using a Pulldown Window Menu

To display a window’s window menu and make a selection, do the following:

1.
2. Press and hold down button 1.
3.
4
5

Position the pointer on the window menu button.

Drag the pointer down the menu to the selection you want to choose.

. When the selection highlights, release button 1.

. (Move and Size only.) Move the pointer to the desired location or until the

desired size is achieved, then click button 1 to end the operation.

If you change your mind and don’t want to make a selection, move the pointer
off the menu area before you release the button 1.

Using the Keyboard to Display the Window Menu

You can also display the window menu by pressing (Esc). To make a
choice using this method, use the (4) and (v] keys to highlight a selection, then

press (Rewrn). If you don’t want to make a selection, press (Left Shift again.

Window Manager Selections

The following table describes the window menu selections.

Table 3-5. The Window Menu Selections

To do this ... Select ...
Restore a window from an icon or after maximizing. Restore
Change the location of a window. Move
Change the width and height of a window. Size
Shrink a window to its icon (graphic representation). Minimize
Enlarge a window to cover the entire root window. Maximize
Send a window to the back or bottom of the window stack, the Lower
position closest to the root window.
Immediately stop the window and make it disappear. Close

3-12 Using the X Window System

You can also use mnemonics and accelerators to select items from the window
menu. An accelerator is a key that selects a menu item without posting

the menu. For example, the accelerator minimizes a window. The
accelerators are shown on the right side of the menu items.

Mnemonics let you select a menu item once the menu has been posted. The
mnemonic for a menu item is indicated by an underlined character in its label.
To select a menu item using its mnemonic, press the unshifted key for the
underlined charcter.

The rest of this chapter explains how you can use the mouse and the window
manager to control the windows in your environment.

Moving a Window around the Screen

You can move any window (except the root window) by doing the following;:
1. Position the mouse pointer in the title bar.

2. Grab the title bar by pressing and holding down button 1.

3. Drag the pointer. An outline of the window shows you the window’s new
location.

4. Position the outline and release button 1 to relocate the window.

Using the X Window System 3-13

Figure 3-4. An Outline Shows the Window’s Location

You will notice that, along with the window outline, a small location box
displays at the center of the screen. The numbers in this box are the column
and row position of the upper left corner of the actual window (the area inside
the window frame). The measurement is in pixels. Pixels (short for picture
elements) are tiny dots, arranged in rows and columns on the screen, that make
up the displayed images.

As mentioned in the previous section, you can also move a window by choosing
the “Move” selection from the window menu.

Changing the Size of a Window

To change the size of a window, grab the window’s frame with the pointer,
drag the frame to the desired size, and then release the frame.

Where you grab the frame determines how the window gets resized. If you grab
the side of the frame, the window stretches or shrinks horizontally. If you grab
the top or bottom of the frame, the window stretches or shrinks vertically. If

3-14 Using the X Window System

you grab the frame by one of the corner pieces, you can expand or contract the
size of the window in two directions at once.

Table 3-6. Where to Grab a Window Frame

If you want to stretch
or shrink the window ... Position the pointer on the ...

vertically from the ...

top top of the frame, above the title bar

bottom bottom of the frame

horizontally from the ...

right right side of the frame

left left side of the frame

diagonally from the ...

bottom left corner frame’s lower left corner
top left frame’s upper left corner
top right frame’s upper right corner
bottom left frame’s lower right corner

The pointer changes shape when you’re positioned correctly for the grab.
Follow these steps to grab and resize the window:

1. Position the mouse pointer on a part of the window frame.

2. Press and hold button 1.

3. Drag the mouse pointer. An elastic outline represents the new window size.

4. Release button 1 when the elastic outline is the correct size.

Using the X Window System 3-15

Figure 3-5. An Elastic Outline Shows the Window Size

Although you change a window’s size and shape during a resize operation, you
do not change its position. The section of the frame opposite where you grab
always remains in the same location.

As mentioned earlier, you can also resize a window by choosing the “Size”
selection from the window menu. If you choose the “Size” selection, you must
cross the window frame’s border with the pointer before the elastic outline
appears.

Raising a Window to the Top of the Window Stack

As you open more and more windows during a work session, your screen will
become cluttered as some windows become obscured under other windows. The
windows appear “stacked” on top of one another.

3-16 Using the X Window System

Figure 3-6. Windows Become Obscured by Other Windows

To raise a window to the top of the stack (front of the screen), position the
pointer on any visible piece of the obscured window and click button 1. This
also makes the window the active window.

Using the X Window System 3-17

Figure 3-7. A Window Is Unobscured by Raising It

An alternative in some situations is to lower the window on top of the stack by
choosing the “Lower” selection from that window menu.

Iconifying a Window

Sometimes raising a window isn’t enough to solve the problem of a cluttered
root window. You can save space and bring order to your workspace by
reducing inactive windows to icons—small, easily-recognizable graphic images
that represent full-sized windows. Later, as you need them, you can change the
icons back into full-sized windows.

3-18 Using the X Window System

Figure 3-8. Pressing the Minimize Button Iconifies a Window

Changing a window into an icon is known as iconifying or minimizing the
window. To iconify a window:

1. Move the pointer to the minimize button located in the upper right corner
of the window frame between the title bar and the Maximize button.

2. Press and release button 1.

Immediately after you release button 1, the window is iconified. Successive
icons are placed from left to right in a row along the bottom of the root
window using a grid pattern. This placement is by default and can be changed
if your needs require it.

Using the X Window System 3-19

Figure 3-9. Default Icon Placement Is along the Screen’s Bottom

You can also change a window into an icon by choosing the “Minimize”
selection of the window menu as discussed earlier.

Turning an Icon Back into a Window

When you have room on the root window, or simply want to check the progress
of an application runnjng in an iconified window, you can turn the icon back
into a window. Changing an icon into a window is called normalizing or
restoring.

1. Move the pointer to the icon.
2. Double-click button 1 (press and release it twice in rapid succession).

After you double-click on the icon, the window will reappear located at its
previous (pre-iconified) position.

3-20 Using the X Window System

More Work with Icons

Although you can’t enter information into an icon, any program running in a
window as it is iconified continues uninterrupted until it either completes or
pauses to await input from you.

Icons allow you to start an application in a window and then collapse the
window into a tiny symbol over in the corner of your screen. There the
program quietly does its work without cluttering up your workspace.

Displaying and Selecting from an Icon’s Menu

Although an icon doesn’t have a frame like a window, it does have a window
menu that gives you most standard control options. “Size” and “Minimize”
appear on the menu but don’t function with iconified windows.

To display an icon’s window menu and make a selection:

1. Move the mouse pointer over the icon.

2. Click button 1 to activate the icon and display the menu.

3. Move the mouse pointer to the selection you want.

4. Click button one to make the selection.

To make no selection, move the pointer to the root menu and click button 1.
The icon will stay active until you make another window or icon active.
Moving Icons around the Screen

Although icons appear by default in a row along the bottom of the screen, you
can move them anywhere on the root window.

To move an icon:
1. Move the mouse pointer onto the icon.
2. Press and hold button 1.

3. Drag the pointer to a new location. An outline of the icon shows the current
location.

4. Release button 1.

Using the X Window System 3-21

Displaying and Selecting from the Root Menu

The root window has its own menu called (not surprisingly) the root menu.
You can display the root menu any time the mouse pointer is on the root
window. When the pointer is in the root window, remember, it has an x
shape.

To display and select from the root menu:

1.
2.
3.

4.

Position the pointer anywhere in the root window.
Press and hold button 3 to display the menu.

Drag the pointer down the menu until you have highlighted the desired
selection.

Release button 3.

To make no selection, move the pointer off the menu before you release button

3.

Figure 3-10. The Root Menu Provides Screen-Wide Functions

3-22 Using the X Window System

The default selections of the root menu provide you with screen-wide functions
not appropriate for an individual window’s window menu.

Table 3-7. What the Root Menu Default Selections Do

To do this ... Choose this selection ...
Make a new 80x24 hpterm terminal window near New Window
center screen.
Display an analog clock in the upper right corner of the Start Clock
root window.
Display a histogram measuring system load (displays Start Load
next to the clock).
Bring the most concealed window to the front of the Shuffle Up
window stack.
Lower the least concealed window to the bottom of the Shuffle Down
window stack.
Blank out then redisplay the screen (useful if video Refresh
images become corrupt).
Restart window manager to see recent configuration Restart
changes.

Exiting From the X Window System

Exiting from the X Window System means stopping the X11 display server.
Leaving X places you back at the command prompt you had immediately after
you logged into your system.

Before stopping the X Window System, you must first stop any application
programs you may have running. This ensures that you do not unknowingly
leave any orphaned processes executing. It also ensures that all open files are
properly closed to prevent loss of data.

Using the X Window System 3-23

Caution Stop all application programs before stopping the window
system. If you don’t do this, any open files may not be updated
w properly. This could result in the loss of valuable data.

Stopping Application Programs

You can stop a program and remove its window in three ways.

Following the Program’s Normal Exit Procedure

The best way to exit a program is to use the program’s usual “exit” procedure.
This should always be your preferred method for stopping the program. Many
programs have commands or keystrokes that stop them.

If the program is a client and created its own window, the window is removed
when the client stops. If the program is a non-client in a terminal window, the
window remains, and you can stop it when you stop the display server.

Chapter 4 contains more information about stopping programs and what to do
if you have trouble stopping a program.
Closing the Window

You can also stop most applications by closing the window in which the
application is running. To close a window:

1. Position the pointer on the window menu button.
2. Press and hold button 1.

3. Drag the pointer to Close.

4. Release button 1.

Stopping the Window System

After stopping all application programs, stop the window system by holding
down the (CTRL) and (Left_shift) keys, and then pressing the key. This
stops the display server, and with it the window system.

3-24 Using the X Window System

What Next

Now that you’ve experienced the X Window System and learned how to control
your terminal window, you’re ready to use X as your working environment.

Chapter 4 contains information about the viewable clients supplied with

the X Window System and how to run them from the command-line of a
window. Chapter 5 describes how you can incorporate these clients into your
environment.

Successive chapters supply increasingly more detailed information about the
OSF/Motif Window Manager and other “non-viewable” clients.

Using the X Window System 3-25

4

Running from the Command Line

You can divide the programs you run in your X environment into two groups:

clients Programs written specifically to take advantage of the
windowing capability of the X Window System. Clients are the
tools you use to work in your X environment.

non-clients Programs written for terminals, not window systems. You
can run a non-client in the X Window System by creating a
terminal emulation window in which to run the non-client.

This manual uses clients to mean “window-smart” applications, non-clients to
mean “terminal-based” applications, and “programs” to refer to both clients
and non-clients.

You will probably start the programs that you use frequently either
automatically, as part of your X environment, or by choosing them from a
menu. However, you can start any client from a command-line prompt.

This chapter discusses the following topics:
s X11 clients and what they do.

® Command-line syntax.

m Starting programs from the command line.
m Stopping programs.

m The hpterm terminal emulation client.

® The xterm terminal emulation client.

m The xclock client.

m The xload client.

m Working with common client options.

Running from the Command Line 4-1

m Troubleshooting command-line programs.

Meeting the X11 Clients

This chapter discusses four clients (hpterm, xterm, xclock, and xload). Other
clients are discussed in the following chapters as the functions they control

are discussed. But to give you an idea of the tools that are available in the X
environment, this section gives you a brief overview of X11 clients and client

options.

What the X11 Clients Do

The following tables group the X11 clients (somewhat artificially) into
functional categories and give you a brief idea of what the clients do.

Table 4-1. X11 Clients That Initialize and Configure

To do this ... Use this client . ..
Initialize the X Window System and start the X server. xinit
Start xinit, X, and X clients. xlistart
Alter the modifier-key mappings of a keyboard. xmodmap
Adjust display preference options. xset
Initialize a new colormap for an X environment. xinitcolormap
Create a color database for X. rgh
Add a new remote host to your system. xhost
Load a window manager’s resource configuration into the xrdb
Server.
Compile a BDF-formatted font into an X server format. bdftosnf
Create fonts.dir file mkfontdir

4-2 Running from the Command Line

Table 4-2. X11 Clients That Control Window Management

To do this ... Use this client . ..
Resize the contents of a window (not the window). resize
Repaint the display screen. xrefresh
Find out information about windows. xwininfo
Provide OSF/Motif Window Manager services. mwm
Provide HP window manager services. hpwm
Provide uwm window manager. uwm

Table 4-3. X11 Clients That Control Graphics Functions

To do this ... Use this client ...
Open a window into a graphics workstation overlay plane. xseethru
Make a screen dump (pixmap). xwd
Translate an xwd pixmap to Starbase format. xwd2sb
Translate a Starbase pixmap to xwd format. sb2xwd
Print a screen dump on a PCL-format printer. xpr
Stop multiple Starbase X windows. gwindstop
Create a new X window for Starbase. xwcreate
Destroy a Starbase X window. xwdestroy
Display a previously made screen dump. xwud

Running from the Command Line

4-3

Table 4-4. X11 Clients That Provide Viewable Services

To do this ... Use this client ...
Make a window that emulates an HP terminal. hpterm
Make a window that emulates a DEC or Tektronix terminal. xterm
Display a clock telling the system time. xclock
Display a histogram telling the system load. xload
Make a bitmap for a cursor, icon, or root window tile. bitmap
Display the characters of a particular X font. xfd
Set the color and appearance of the root window. xsetroot

If your interest is in running applications in the X environment, you probably
won’t ever use some of the clients listed above. If your primary interest is

in programming, graphics, or the more technical aspects of environmental
control, chapters 6 through 8 and the man pages are your definitive source of
information.

The following clients do not require X to be running:
m rgh

m xwd2sb

m sb2xwd

m Xpr

m bdftosnf

® nkfontdir

Specifying the General Syntax for Command-Line Starts

Starting clients from the command line of a terminal window gives you a way
to dynamically alter the elements that compose your X environment. To start
a client from a command line, you must have X11 running, and you must use
the correct command-line syntax.

4-4 Running from the Command Line

Specifying the Syntax

The general syntax for all clients that you start from a command line is the
same:

client [-optz’ons] [&]

Options enable you to control the appearance and behavior of a client that

you start from a command line. Each client has its own options, but some
clients, such as the viewable clients discussed later in this chapter, use the same
options. The reference section contains the complete list of all client options.

You specify an option after the client name. The option begins with a hyphen

(—) and includes the option itself and an argument. For example, the following
is a typical command line to start an hpterm window with a black background
and white foreground:

hpterm -bg Black -fg White &

Choosing Background Processing

An important element of the command-line syntax is the ampersand (&) which
ends the command line. As mentioned earlier, the & tells the system to start
the client as a background process (a process that doesn’t require the total
attention of the computer). Background processing enables you to have more
than one client running at the same time and frees your keyboard for further
use.

Although the & is an optional element, and you can choose to run a client as a
foreground process if you desire, you will probably find that in most cases, you
will use background processing.

Running from the Command Line 4-5

Starting Programs

You can start a client either locally or remotely. A local client is a program
that is running on your “local” system, the same system that is running your
X server. A remote client is a program that you view from your local display,
but the program actually resides and is running on a system other than yours,
a “remote” system.

Starting Local Clients

You can start a local client from the command line any time after you’ve
started X11 and have a window displayed that has a command prompt. To
start the client, type the name of that client, followed by any options, then

press (Retam).

It isn’t necessary to specify options to run the client; just typing

the client name and pressing will start the client using a list

of option default vaiues. System-wide defaults are contained in the
/usr/1ib/X11/sys.Xdefaults file. Options that override these system-wide
defaults are contained in the .Xdefaults file in your home directory in
/usr/1lib/X11/app-defaults/client, and shell variables ($DISPLAY).
Command-line options, as you might suspect, override both of these default
files.

For example, the following gives you the default clock client: an analog clock
updated every 60 seconds:

xclock &

You can, however, override these defaults and start a clock client with a digital
readout in the lower left corner of the screen.

xclock -digital -geometry +1-1 &

Starting Local Non-Clients

A non-client normally relies on a terminal instead of a window for displaying
its output. To start a non-client program in an X11 window environment, you
must first create a terminal emulation window, and then run the non-client in
that window.

4-6 Running from the Command Line

The following example simply creates an hpterm window. Using the command
prompt in the window, you can operate most HP-UX system commands (the
exception being a command like update which affects the entire system, not
just the X environment).

hpterm &

The window opens with its command prompt in the same directory as its
parent window, the window from which it was started.

At any command-line prompt in any X window, you can start a non-client
program simply by typing the start command for that program (usually the
program’s name) followed by a (Return). For example, you could type the
following at the command-line prompt:

banner windows are great

The command prints a banner on the window.

Starting Remote Clients

A remote client is an X11 program running on a computer that is not the same
computer that the X server is running and displaying on. In other words, the
hallmark of a remote client is that the client runs on one computer while the
output displays on another.

You can start a remote client from the command line any time after you’ve
started the X Window System and have a window with a command prompt.
You can start a client on any remote host to which your system has access. A
remote host is the computer system that runs the remote client.

Gaining Remote Access

To gain access to a remote host, you must meet all of the following criteria:

m Be on a network with other systems. (This manual uses the NS-ARPA
Services commands in all examples.)

m Have the internet address and hostname of the remote host in your system’s
/etc/hosts file.

m Have a valid login on the remote host.

m Have the remote host listed in the /etc/X0.hosts file.

Running from the Command Line 4-7

m Have the remote host listed in a .rhosts file in your home directory on
your local system. (You may also want to have your local system listed in a
.rhost file on the remote host.)

The first three criteria provide basic network capability to your system. You
must have them to use the network whether or not you use the X Window
System. The last two criteria provide your local X server with the ability to
use the network. The .rhosts file lists the systems that have permission to use
your username and account to access a system without formally logging in.
The X0.hosts file contains a list of all X11 hosts known to your X server. The
“0” signifies that the file is used by display 0 (similarly, display 1 would use an
X1.hosts file).

Note A .rhost file allows someone to access your login account
without giving a password. Depending on your situation, this
ﬁ may pose a threat to the security of your system or the network

your system is on. Check with your system administrator and
carefully analyze your security needs.

Starting the Client

You have two choices when it comes to running clients on a remote host:

a You can log into the remote host and run a client.

m You can start a client remotely without formally logging in.

In either case, you need to select the display on which you want the output to.
appear.

Selecting the Display

Just as you need to select a remote host on which to run a client, so too you
need to select a display on which the client’s output appears. Typically this
will be the display attached to your system, but it doesn’t have to be.

For example, you could be sitting at your system reviewing lab reports kept on
a (remote) lab system when you get the idea to show the reports to Turner

at another division. You call to make sure Turner is in, then open a window
on Turner’s system, display the lab report that interested you, and discuss its

4-8 Running from the Command Line

significance with Turner without the delay or trouble of making a physical copy
of the report and mailing it.

To help you in selecting a display, viewable clients have a -display option
that allows you to specify on the command line which system is to receive the
output. The syntax for the option is as follows:

—display host: display. screen

The host specifies the hostname of the system where you want the remote
client’s output to appear (usually your own system). The display is the number
of the display where the output is to appear (usually 0 on an HP Series 300
and 0-3 on an Series 800). The screen is the number of the physical screen
were the output is to appear (usually 0).

Examples of Starting Remote Clients

The following examples illustrate several ways of doing the same thing:
starting an xload client on remote host hpcvfaa and displaying it on the
console of your local system hpcvfbb.

Example 1: Logging In to a Remote Host the Wrong Way. At the command-line
prompt of an existing terminal window, you could type the following:

rlogin hpcvfaa
xload -—display hpcvfbb:0.0

Using this command is a mistake in most cases. Note the & is missing from
the end of the command line. This command would not return a command
prompt to the window until you stopped the x1load client. Your window would
effectively be “frozen.”

Example 2: Logging In before Running the Client in Background. At the
command-line prompt of an existing window, you could type the following:

rlogin hpcvfaa
xload -display hpcvfbb:0.0 &

Similar to example 1, these two command lines log you in and then start the
xload client, this time as a background process. This leaves your original
window free for use, but logged into hpcvfaa rather than your local system.
The display is again to your system’s console.

Running from the Command Line 4-9

Example 3: Using a Remote Shell to Start a Client. At the command-line
prompt of an existing window, you could type the following:

remsh hpcvfaa -n /usr/bin/X11/xload -display hpcvfbb:0.0 &

Respectively, this command starts a remote shell, on remote host hpcvfaa,
redirects remsh input (necessary in this case), starts the client xload, and
directs output to system hpcvfbb, display 0, screen 0, as a background process.

Note that you wisely used the full path to the xload client when starting it.
This is a good idea, especially in situations where the remote machine might
have two versions of the same client (for example, an X10 and an X11 version
of x1oad). The remsh command does not allow the $PATH variable.

The benefit of using a remote shell instead of a remote login is that a the local
system starts only one process (the client) with a remote shell, while with the
remote login the local system starts two processes (the remote login and the
client).

Starting Remote Non-Clients

Starting a remote non-client is similar to starting a remote client except that
before you start the non-client, you must first start a terminal emulation
window in which to run the non-client.

You can always log into the remote host and start a non-client. Using an
existing window essentially makes that window a “terminal” of the remote
host. Qutput from the non-client appears in the window. When you exit the
non-client and the remote host, the window “returns” to the local system.

Starting a non-client using a remote shell such as remsh, however, is sometimes
inappropriate. To use a remote shell, you must first create a terminal
emulation window in which to run the non-client. If the non-client executes
too quickly, you may not see the results, since, once the non-client finishes
executing, the emulation window to the remote host closes.

4-10 Running from the Command Line

Table 4-5. Choosing a Method of Displaying Remote Processes

If you want the window to ... Do this ...
Remain after you have finished the initial [Use an existing window to log in to
remote process. the host before executing the remote
' command.

Disappear after you’re finished with the |Execute the command as an option of
remote process. creating a new window.

Example 1: Logging In to a Remote Host before Running the Non-Client

At the command-line prompt of an existing window, you could type the
following: '

rlogin hpcvfaa
1

If you are familiar with networks, you probably recognize this command. It
simply logs you in to a remote host, hpcvfaa, and then uses the HP-UX 11
command to list the files in your home directory on that host. Remember,
operating system commands, because they are part of HP-UX and not the X
Window System, are non-clients.

Example 2: Starting a Window That Starts a Remote Non-Client

This example and the next one show what happens when the same command
syntax is used to start different types of remote non-clients. This example
shows a non-client that is not interactive.

At the command-line prompt of an existing window, you could type the
following and press (Return):
hpterm -display hpcvfbb:0.0 -e remsh hpcvfaa -n 11 &

This example starts another hpterm terminal emulation window client. As

the first option of that client (-display), the ouput is directed to your local
display (hpcvfbb). As the second option (-e), the hpterm client executes a
remote shell on hpcvfaa that connects the window to a remote host (hpcvfaa)
and lists the files in your home directory there.

Running from the Command Line 4-11

Although, at first glance, this command line appears to do the same thing as
example 1, there is an important difference. When the 11 command of example
2 finishes executing, the window created for it to run in will disappear whether
or not you’ve had time to view all the files. Remember, the window will close
when the remote command has finished executing. Therefore, this is a poor
command syntax to use in this situation.

Example 3: Starting a Remote Non-Client Window

At the command-line prompt of an existing window, you could type the

following and press (Return):
hpterm -display hpcvfbb:0.0 -e remsh hpcvfaa -n vi report &

This example is the same as example 2 except that the non-client started is
different. The non-client vi is interactive, that is, you issue commands to

it and specifically tell it when you are finished. You start vi and open the
report file. In this case, the window stays displayed until you exit vi. You
could edit report and exit, closing the window. Or you could save report
and read in another file. As long as you didn’t exit vi, your “remote editing
window” would stay displayed.

Stopping Programs

How you stop a program you’ve started from a command line depends on
whether the program is a client or non-client.

Stopping Clients

Clients like x1load and xclock have no data to save. You stop them by
choosing the “Close” selection from the window menu.

Other clients, like hpterm, xterm, and bitmap, may contain data you want to
save. Save the data before you stop the client. In the case of terminal windows,
a non-client running in the window may actually contain the data. Stop the
non-client in the approved manner before you stop the window. When you
have a command-line prompt in a terminal window, you can stop the window.

4-12 Running from the Command Line

In the case of bitmap, use the “Write Output” selection on the sidebar menu to
save the bitmap before you stop the client.

After you have saved any data and exited any non-clients (in the case of
terminal windows), stop the client by choosing the “Close” selection from the
client’s window menu. Note that if you started a non-client as an option of
creating a window, when you stop the non-client, the window will stop.

Stopping Non-Clients

Stop all non-clients in the manner approved in the instructions for that
non-client. Generally, a non-client program stops automatically when it finishes
executing or has a “stop” provision.

Killing Programs That Won’t Stop

If for some reason (and you will no doubt discover some) you cannot stop a
program in the normal manner, you should “kill” the program before you
exit the window system. Killing the program means using the HP-UX kill
command to stop the program’s execution environment or “process.”

Other Ways to Stop a Program

Before you use the kill command to stop a program’s process, try the
following key sequences:

m Press and, while holding it down, press (c).
m Press and, while holding it down, press (d).
m Press (g).

m Press (ESC), then (), then (g).

Killing the Program’s Process

If none of these key sequences stop the program, use the following steps to
kill the program’s process:

1. Save any data that needs saving.

2. Find the PID (process ID) for the program by typing the following:
ps -fu username

Running from the Command Line 4-13

where username is your login name. The ps -fu command lists all the
processes running under your login name. You should be able to identify the
program you want to kill by looking for it under the “COMMAND?” column
(the rightmost column in the list). The PID for the program will be located
in the second column from the left.

3. To kill the program, type:
kill -2 pid The equivalent of (cTRL) (<)
where pid is the PID number.
4. If this doesn’t work, type:
kill -3 pid A stronger version of kill.
5. If this still doesn’t work, type:
kill -9 pid The strongest version of kill.

You can kill several programs at once by including several PIDs separated by
spaces in the command. Just be careful that you have the correct PIDs.

Terminal Emulation Clients

The X Window System comes with the following two terminal emulation
clients:

hpterm Emulates a Term0 terminal.

xterm Emulates DEC VT102 and Tektronix 4014 terminals.

Emulating an HP Terminal with the ‘hpterm’ Client

The hpterm terminal emulation window is the default terminal used by your

X Window System and provides you with basic access to your system. The
window’s command-line prompt functions exactly like the command-line
prompt of an HP Term0 terminal. TermO defines an HP level 0 terminal; it is
a reference standard defining basic terminal features. For more information
about Term0 terminals, see Term0 Reference in the HP-UX documentation set.

4-14 Running from the Command Line

The hpterm window client includes the following features:
m Escape sequences that control terminal operation.
m 16 definable softkeys.

m Full Roman8 character set (ASCII and Roman Extension), ISO 8859.1
character set, and Roman Extension 7-bit characters set.

m Two character fonts (base and alternate).

m Screen editing functions.

If your needs require one or more of these features, see chapter 7, “Customizing
Special X Environments,” where they are discussed in detail.

Syntax

The syntax of the hpterm window client is as follows:

hpterm [-options] [&]
You’ll find a list of common viewable-client options in “Working with Common
Client Options” later in this chapter. For a complete list of hpterm options, see
the hpterm pages in the Reference section.
Using ‘hpterm’ Terminal Window Softkeys

The hpterm client softkeys work exactly like an HP Term0 terminal’s softkeys.
To display hpterm softkeys, position the pointer in an hpterm window and
press the key. Clicking on a softkey selects that function or setting.
Pressing the key again turns off the softkey display.

Additionally, you can color the following elements of hpterm softkeys:
m Background.

m Foreground.

= Top shadow.

m Bottom shadow.

m Top shadow tile.

m Bottom shadow tile.

Running from the Command Line 4-15

Coloring hpterm softkeys is similar to coloring other clients and to coloring the
HP Window Manager. You’ll find more information about coloring in chapters
5 and 6.

Coloring ‘hpterm’ Scrollbars

The hpterm client also has an option for displaying scrollbars. Scrollbars
enable you to scroll the contents of a window, for example, a text file you are
editing. You can specify the color and the width for hpterm scrollbars. This is
also covered in chapter 5.

Emulating a DEC or Tektronix Terminal

The xterm client is a terminal emulation window. xterm windows emulate
DEC VT102 and Tektronix 4014 terminals. Although xterm windows are not
the default terminal windows for the X Window System, you can use them as
your needs require.

Syntax

The syntax of the xterm window client is as follows:

xterm [- options] [&]

You’ll find a list of common viewable client options in “Working with Common
Client Options” later in this chapter. For a complete list of xterm options, see
the xterm pages in the reference section.

Using ‘xterm’ Scroll Features

The xterm client has a “jump scroll” option (-j). The option enables xterm,
when its scrolling gets behind, to scroll (jump) several lines at a time from the
top of the window.

Another option (-s), enables xterm to scroll asynchronously. This enables
xterm to scroll faster when the window screen is no longer up to date because
of a high network load.

To use either option, include the option on the command line after the name of
the client.

4-16 Running from the Command Line

Using ‘xterm’ Menus

The xterm client has three menus. The standard xterm menu pops up when
the “control” key and button 1 are pressed while the pointer is inside the
xterm window. The “Modes” menu pops up when the “control” key and
button 2 are pressed while the pointer is in the window. The “Tektronix”
menu pops up when the “control” key and button 2 are pressed in a Tektronix
window.

Special Terminal Emulator Options

Both hpterm and xterm, because they are terminal emulators, have some
special options that other clients don’t have.

Making a Login Window

Both hpterm and xterm have an option that allows you to specify that the
window runs a login shell before displaying the command-line prompt. Using
the -1s option, the shell runs as a login shell, that is, the shell reads the
/etc/csh.login file and .login, or /etc/profile and .profile file before
starting the window.

Cutting and Pasting with the Mouse

Both hpterm and xterm allow you to use the mouse for cut and paste
operations. You can cut text from one location in a window to another, or
from one window to another.

Currently, hpterm and xterm use the button definitions in the following table
for cut and paste operations:

Table 4-6.
Mouse Button Definitions for Cut and Paste Operations
If you see ... On a 2-button mouse press ... On a 3-button mouse press ...
Button 1 The left button. The left button.
Button 2 Both buttons simultaneously The middle button.
Button 3 The right button. The right button.

Running from the Command Line 4-17

To cut and paste using ‘hpterm’.

Cutting text

Pasting text

Copying a line

To cut text, follow these steps:

1.
2.

Press and hold the key.

Position the pointer at the start of the text you want to cut
and press and hold button 2. This marks the beginning of
the text region.

. Drag the pointer to the end of the text you want to cut and

release the button. This copies the text into a global cut
buffer, a buffer that holds text that has been edited out.
The region is marked as you drag the pointer.

To paste text from the global cut buffer into a window, follow
these steps:

1.
2.

3.

Press and hold the key.

Position the pointer in the window in which you want to
paste the text. Because the text will appear like it is being
typed at the cursor’s location, you may need to position the
cursor as well.

Click button 3 to “type” the text.

To copy a single line of text from one place and paste it in at
the cursor location, follow these steps:

1.
2.

Press and hold the key.

Position the pointer at the start of the text you want to
copy.

. Click button 1 to copy text from the pointer to the end of

the line and “type” it at the cursor location in the same
window. (Position the pointer in another window and click
button 3 to “type” the text in the second window.)

To cut and paste using ‘xterm’.

Cutting text

To cut text, follow these steps:

1.
2.

Position the pointer at the start of the text you want to cut.

You can cut a text region in the following three ways:

4-18 Running from the Command Line

Pasting text

Extending text

Scrollbars

m To cut a region character by character, click and hold
button 1.

m To cut a region word by word, double-click and hold
button 1.

m To cut a region line by line, triple-click and hold button 1.
This marks the beginning of the text region.

Drag the pointer to the end of the text you want to cut and
release the button. This copies the text into the global cut
buffer.

To paste text from the global cut buffer into a window, follow
these steps:

1.

2.

Position the pointer in the window in which you want to
paste the text. Because the text will appear like it is being
typed at the cursor’s location, you may need to position the
cursor as well.

Click button 2 to “type” the text.

You can extend or contract either half of the current selection
by following these steps:

1.

Position the pointer in the top or bottom half of the text
that you have selected with button 1.

. Press and hold button 3.
. To expand or contract the half that you picked, drag

the pointer away from or toward the center point of the
selection.

. When the selected area includes the correct text, release

button 3.

You can start either an hpterm or xterm window with scrollbars. To do this,
include the -sb option on the command line when you start the window. For
example, to start an hpterm window with a scrollbar, type the following line
after the command prompt:

Runnihg from the Command Line 4-19

hpterm -sb &

Window Titles and Icon Names

By default the title of a terminal emulation window is Terminal Emulator.
Equally original are the default names that appear on labels of hpterm and
xterm icons. These are, respectively “hpterm” and “xterm.” Two options
enable you to give your terminal windows and icons more original names if you
so desire.

Use the -title option to give a title to a terminal emulation window. Titles
with two or more words must be enclosed in quotes (“titlel title2”).

Use the -n option to give a name to the icon of a terminal emulation window.
Icon names of two or more words must be enclosed in quotes (“namel
name2”). Note also that lengthy names may be truncated on the right to the
width of the label.

The following example illustrates the use of these two options:
hpterm -n System -title "System Window" &

This example creates an hpterm window, giving it the title “System Window.”
When the window is iconified, the icon label reads “System.”

Telling Times with ‘xclock’

The X Window System includes a clock client called xclock. You can choose
either an analog clock (a clock with hands and a face) or a digital clock (a
clock with a text readout showing the day, date, time, and year).

Syntax
The syntax for xclock is as follows:
xclock [-options] [&]

You’ll find a list of options that xclock shares with other viewable clients in
“Working with Common Client Options” later in this chapter. For a complete
list of xclock options, see the xclock pages in the reference section.

4-20 Running from the Command Line

Although ampersand (&) is an option, you will rarely find it practical to use
xclock with out it. When run from the command line as a foreground process
(without the &), xclock takes control of the window and does not return the
command-line prompt, thus making it impossible for you to use the window
until you either close the clock or kill its process.

Some ‘xclock’ Options

The xclock client comes with some options that are unique.

Marking the Half Hours

The -chime option causes the speaker on your system to sound once on the
half hour and twice on the hour. ‘

Selecting the Clock Format

As mentioned, xclock has two formats: analog and digital. The analog format
is the default.

Specifying the -analog format (or no format) draws a conventional 12-hour
clock face with strokes marking the hours and ticks marking the minutes.

Specifying the -digital format draws a digital readout containing the day,
date, time, and year. The format automatically varies for local language
custom based on the value of the SLANG environment variable. (Of course,
you must specify an appropriate font for the language you select.) For more
information about $LANG, refer to the HP-UX Native Language Support
manual.

Updating the Time

The -update seconds option enables you to select the time interval between
updates to the clock display. The default is an update every 60 seconds.

Running from the Command Line 4-21

Examples
The following examples illustrate both clock formats:

xclock -digital -update 10 &

xclock -analog -chime -update 5 &

The first example creates a digital clock that updates every 10 seconds. The
second example creates an analog clock that chimes every 30 minutes and
updates every 5 seconds.

Viewing System Load with ‘xload’

The X Window System includes a client called xload that displays a histogram
of the current system load.

Syntax and Options

The syntax for xload is as follows:

xload [- options] [&]

You’ll find a list of options that x1oad shares with other viewable clients in
“Working with Common Client Options” later in this chapter. For a complete
list of xload options, see the x1load pages in the reference section.

As with xclock, the & that completes an xload command line is, strictly
speaking, an option. But you will rarely find it practical to use xload without
it. When run from the command line as a foreground process (without the &),
xload does not return the command-line prompt, thus making it impossible for
you to use the window until you either close or kill the xload client.

4-22 Running from the Command Line

Some ‘xload’ Options

The x1load client comes with some options that are unique.

Updating the Load

The -update seconds option enables you to select the time interval between
updates to the load histogram display. The default is an update every 5
seconds.

Scaling the Histogram Graph

The -scale division option enables you to adjust the scale of the histogram
by drawing extra division lines on the graph. By default xload measures the
average load on the system using a scale of 0 (no load) to 1 (a single division).
Using the -scale option, however, you can select a division other than 1
against which to measure the load.

Note that if you use the default setting and the system load goes beyond that,
extra divisions will be drawn automatically to keep the load in scale.

Example

The following example illustrates an xload client started from the command
line:

xload -update 15 -scale 2 & (Retun)

This example creates a load histogram that updates every 15 seconds and uses
a scale of 2 units.

Running from the Command Line 4-23

Working with Common Client Options

The viewable clients have the following options in common:
m Color.

m Display.

m Size and location.

= Fonts.

= Other options.

Color Options

All viewable clients have elements that you can color. If your system uses a
monochrome monitor, it is still possible to use the tiling capability of the HP
Window Manager to achieve a pleasing 3-D gray-scale color scheme.

The viewable X11 clients, as you might expect, have options for specifying the
color of their elements.

Available Client Color Options

The following table lists the colorable elements of X11 clients.

Table 4-7. Color Options for Viewable X11 Clients

Option Descriptions , X11 Clients
To change this ... | Use this option ... |hpterm |xterm | xclock | xload
Foreground color. {-fg color V4 Vv Vv V4
Background color. |-bg color Vv Vv v V4
Cursor color. -cr color V4 V4
Pointer color. -ms color V4 V4
Clock hands color. | -hd color V4
Hand edge color. |-hl color V4 v

4-24 Running from the Command Line

You can specify an element color on the command line in the following two
ways:

m By listing the color name after the option.
m By listing the hexadecimal color value after the option.

The file /usr/1ib/X11/rgb.txt lists all colors that have “names.” Specifying
a name after a color option causes the element referred to by the option to
display in that color.

For example, the following command line creates an hpterm window with a
black background and a white foreground:

hpterm -bg Black -fg White &

Using Hexadecimal Color Values on the Command Line

While using color names is an easy way to select colors, you are limited by the
number of available names. Fortunately, the use of hexadecimal color values
offers a solution. You can specify any color, whether it has a name or not, by
using a hexadecimal color value. This value corresponds to the amount of each
of the primary colors (red, green, and blue) that are used to make up the color.

If you use the C shell (¢sh), a color value consists of a number sign (#) followed
by a hexadecimal number for the value of each color (red, green, blue). If

you use the Bourne shell (sh) or Korn shell (ksh), a color value consists of

\# followed by a hexadecimal number for each color (red, green, blue). The
hexadecimal number can be 1, 2, 3, or 4 digits long. You must have the same
number of digits for each of the primary colors. Thus, valid color values consist
of 3, 6, 9, or 12 hexadecimal digits.

For example, #3a3 and #300a00300 are both valid color values for the same
color, a shade of green. #000, #000000, #000000000, and #000000000000 all
specify the color black. And #fff, #{Tffff, T, and AFFFTTHT all specify
white. The number of digits you use in color values depends on your need for
subtle shades of color and the capability of your display hardware.

Examples

As an example of specifying color on a command line, suppose you wanted an
analog clock with a plum background, white foreground, and black hands with
white edges. You could specify the clock in either of the two following ways:

Running from the Command Line 4-25

xclock -bg plum -fg white -hd black -hl white &

or
xclock -bg #c5489b -fg #fff -hd #000 -hl #fff &

For the purposes of this example, plum, white, and black were chosen because
they are colors with valid color names in /usr/1ib/X11/rgb.txt. However,
you can specify a unique color (one with no name equivalent). For example,
a slightly darker plum for the background is created with the following
hexadecimal value:

xclock -bg #ba408b -fg white -hd black -hl white &

Specifying Size and Location on the Command Line

Each client you add to your environment is located at a certain position on the
root window. The default position is the upper left corner, but you can place a
client anywhere on the root window using the -geometry option.

The Syntax of the ‘-geometry’ Option
The -geometry option has the following syntax:
-geometry Widthx Height[+columntrow]

Width The width of the window in characters (for terminal windows)
or pixels (for other clients). Note that the width of the
terminal window that appears varies depending on the font
size.

Height The height of the window in lines (for terminal windows) or
pixels (for other clients). The height of a terminal window is
also dependent on the size of the font chosen.

column The column location of the window given in pixels. Plus (+)
values refer to the left side of the window. Minus (—) values
refer to the right side of the window.

row The row location of the window given in pixels. Plus (+)
values refer to the top of the window. Minus (—) values refer
to the bottom of the window.

4-26 Running from the Command Line

You have the following choices for defining client size and location:

m Including both the size and location in the command. The window appears
as specified.

m Including only the size in the command. The window appears in the specified
size at the default location.

m Including only the location in the command. The window appears at the
specified location in its default size.

m Including neither size nor location in the command. The window appears in
the default size at the default location.
Placing Clients on the Root Window

The following table lists some typical locations for a 1280x 1024 high-resolution
display.

Table 4-8.
Example Locations for an 80x24 X11 Terminal Window
To position a window here . .. Use this location . ..

The upper left corner of the root window. +1+1
The lower left corner of the root window. +1-1
The upper right corner of the root window. —-1+41
The lower right corner of the root window. -1-1
The left side at mid-window. +1+512
The right side at mid-window. —14512
The top of the root window and right of center. +635+1
Centered at left. +1+330
Centered at right. -1+330
Centered in the root window. +320-+330

Running from the Command Line 4-27

Note The resolution of screens varies. Some locations may work for
i you but be off the screen for someone else! Therefore, you may
% need to experiment, altering the geometry specifications to fit
the resolution of the screen.

Example

The following examples illustrate a typical command-line use of the geometry
option:

xclock —geometry 90x90-1-30 &

xload —geometry 120x90+1-1 &

The first example starts an xclock client. The geometry option gives the clock
a 90-pixel by 90-pixel size and locates it 1 pixel to the left and 30 pixels up
from the lower right corner of the screen.

The second example starts an xload client. The geometry option gives the
client a 120-pixel by 90-pixel size and locates it in the lower left corner of the
screen.

Specifying the Display on the Command Line

As described above in “Starting Remote Clients,” you can start an X client
program on one computer and have the output of the program display on
another. The default display is obtained from the DISPLAY environment
variable of the system on which the client starts, but the DISPLAY variable
can be reset dynamically for a client by including a —display option on the
command line when you start the client.

The Syntax for the ‘—display’ Option
The -display option has the following syntax:

—display [host:display.screen)

4-28 Running from the Command Line

host Specifies the hostname of a valid system on the network.
Depending on the situation, this could be your system’s
hostname or the hostname of a remote system.

display Specifies the number of the display on the system on which
you want the output to appear. On HP 9000 S300’s, this

number will usually be 0. On HP 9000 S800’s, this could be
any number depending on the configuration.

screen Specifies the number of the physical CRT screen where the
output is to appear. The default is 0.
Example
An example of using the display option on the command line is the following:
hpterm -—display hpcvfaa:0.0 &

This command, when issued at a command-line prompt, starts an hpterm
process on the local system and displays output (the window) on screen 0,
display O of the hpcvfaa system. The window has the default size, location,
and color.

Specifying the Font in the Command Line

In addition to the options discussed above, the viewable clients also have an
option that enables you to specify the font for text. The -fn option enables
you to select a font for the label that displays on the xload client as well as the
text for terminal emulation windows.

Working with Fonts

Fonts are in subdirectories within the /usr/1ib/X11/fonts directory. You may
specify a font to use in either of two ways:

m Providing an “alias” for the font.
m Specifying a list of the font’s characteristics.
These methods of specifying fonts are discussed in more detail in chapter 5.

If no font is specified, or if the server can’t find the font, fixed is usually used.

Running from the Command Line 4-29

The two terminal emulators also have a —£b option. You can use this option to
specify a a font for bold text. The text specified must be the same height and
width as the font specified with —£n, the “normal” font.

Example

The following examples illustrate the command-line use of the font option:

hpterm -fn hp8.10X20 &
hpterm -fn hp7.10x20 &

The first line creates an hpterm window with a large, easy-to-read font
(hp8.10%20). The font is located in /usr/1ib/X11/fonts/misc/hp8.10%20,
and is referred to by the alias hp8.10%20. The second line represents a
misspelling of the first line. The result is the creation of a window, but the font
used for the command-line prompt is the default font, not hp8.10x20.

For information about fonts, refer to chapter 5.

Where to Go Next

If your X Window System environment meets your present needs, you can
stop here. If, however, you would like to customize your environment a little,
perhaps coordinate the colors of your clients, or select different clients to
display when you start X, or arrange them more efficiently on your root
window, you should continue to chapter 5.

Chapter 6 explains, in more detail than the average mortal need be concerned
about, how to work with the OSF/Motif Window Manager and its resources to
fine-tune your control over your X environment. Chapters 7, 8, and 9 present
cases where customization is needed because of special hardware considerations
or the extensive use of graphics.

4-30 Running from the Command Line

5

Customizing Your Local X Environment

As you become familiar with the X Window System, you will probably want to
modify your X environment to better suit your situation. Chapter 5 discusses
customizing your window environment. Using the information in this chapter,
you can change the appearance and behavior of the X Window System to suit
your needs without affecting the appearance and behavior for other users. These
changes include the following;:

m Customizing the colors of clients.

m Changing the clients that start when you start X.
m Starting X at login.

m Creating custom bitmaps.

m Customizing the root window.

m Working with fonts.

m Using Remote Hosts.

Before You Begin Customizing

To customize your window environment, you must modify or create three
configuration files. These files contain information that the X server uses to
configure your window environment. Incorrectly modifying these files could
bring your X Window System to a screeching halt. So if you are new to this
type of thing, read the following two sections. They list some simple safety
precautions (often overlooked by people who “know what they’re doing”) that
keep you from getting into trouble if you make a mistake. They also give you a
little background on the configuration files with which you’ll be working.

Customizing Your Local X Environment 5-1

How to Begin Customizing

Swimming pools you should jump into with both feet; customizing your
environment you should approach step by step. Although the following safety
tips may take a little more time to implement, they are the steps that people
regretfully “wish they had taken” after something has gone wrong.

Making Backup Copies of Your Work

Don’t modify any original files. Make a copy of the original file and then
modify the copy. That way, if all else fails (and it sometimes does), you can
go back and get another copy of the original and start again. As you get
deeper into rearranging your environment, test your modifications and, if they
work properly, save that version of your modifications, make a copy of it, and
continue the rest of your modifications on the copy.

Making Incremental Changes

Make incremental changes when you edit the configuration files. That way, if
something goes wrong, you can easily isolate the mistake. It’s much easier to
pinpoint a mistake in syntax or spelling if you’ve only modified one line of one
file, rather than multiple lines in several files.

Choosing a Text Editor

The three configuration files are text files. You can use vi, emacs, or any other
editor that produces text files to do your editing. You edit the text of the
configuration files just like you would edit the text of a letter, replacing what
you don’t want with something more appropriate.

One trick that you might consider is to comment out a line that you don’t
want rather than deleting it from the file. To comment out a line, place

a number sign or pound sign (#) in the left margin of the line (use a ! to
comment out a line in .Xdefaults). This allows you to use the line as a model
for future editing and provides you with the opportunity to restore it (by
uncommenting it) at some future time.

5-2 Customizing Your Local X Environment

Where to Begin Customizing

Three configuration files come with the X Window System:
m sys.Xdefaults

m sys.xllstart

m system.mwmrc

You’ll find these files in the /usr/1ib/X11 directory. The files supply
system-wide default configuration for users who start X but don’t have
individual configuration files in their home directories.

The following three configuration files should be in your home directory if you
want to customize your X environment. Typically, you copy them from their
system-wide versions in /usr/1ib/X11:

.Xdefaults Specifies default appearance and behavior characteristics for
clients.

.xlistart Specifies the clients that start when the X Window System
starts.

.IWmrc Specifies the menus, menu selections, and button and keyboard
bindings that control the OSF/Motif Window Manager. This
file is discussed in more detail in chapter 6.

Note that the /usr/1ib/X11/app-defaults/ directory may also contain
configuration files for client applications.

Customizing the Colors of Clients

You control the color of the clients (including the window manager) that
display in your X environment by modifying the .Xdefaults file. Valid color
names are stored in /usr/1ib/X11/rgb.txt.

Coloring window manager features such as borders is covered in “Managing the
General Appearance of Window Frames” in chapter 6.

Customizing Your Local X Environment 5-3

Copying ‘sys.Xdefaults’ to ‘.Xdefaults’

When you issue the x11start command to start the X Window System, the
command looks in your home directory for a .Xdefaults file. If it finds the
file, it uses the information in the file to color your X environment. If it doesn’t
find the file, the xi1istart command uses /usr/1ib/X11/sys.Xdefaults.

To begin customizing the colors of your X environment, copy the
sys.Xdefaults file to your home directory as .Xdefaults.

cp /usr/1lib/X11/sys.Xdefaults $HOME/.Xdefaults

This gives you a read-only copy of .Xdefaults. You must make the
.Xdefaults file writable so that you can modify it. To do this, type the
following command:

chmod u+w .Xdefaults

This will enable you to color the clients in your environment without affecting
the environments of other users on the system.

If the file becomes corrupted and inoperable during the editing process, you can
always make a fresh copy from /usr/1ib/X11/sys.Xdefaults and begin the
editing process again.

Changing Client Colors

Changing the color of a particular client element is a simple process. You
specify a value for the resource that controls the element you want to color.
Use the following steps:

1. Start your text editor and open the .Xdefaults file.

2. Scroll down or search for the client*resource you want to color.

3. Delete the ! and the space from the left margin to activate the line.

4. Replace the “<color>” at the end of the line with the color you desire.
5. Save the file and exit the text editor.

To view the effect of a change to .Xdefaults, simply start a client of the type
whose color you modified.

5-4 Customizing Your Local X Environment

Determining Which Elements to Color

The following tables list the colorable elements of your X environment by
client.

Table 5-1. Terminal Window Elements

To color this element ... Look for this resource ...
hpterm window text ! HPterm*foreground:
hpterm window background |! HPterm*background:
hpterm window text cursor ! HPterm*cursorColor:

hpterm window mouse pointer |! HPterm*pointerColor:

xterm window text ! XTerm*foreground:
xterm window background ! XTerm*background:
xterm window text cursor ! XTerm*cursorColor:
xterm window mouse pointer |! XTerm*pointerColor:

Table 5-2. Load Histogram Elements

To color this element . .. Look for this resource . ..

system load histogram foreground |! Xload*foreground:

system load histogram background |! Xload*background:

Table 5-3. Clock Elements

To color this element ... |Look for this resource ...
analog clock tick marks |! XClock*foreground:
digital clock text ! XClock*foreground:
clock background ! XClock*background:
clock hands ! XClock*hands:

edges of clock hands ! XClock*highlight:

Customizing Your Local X Environment 5-5

Syntax

At some point, you may want to change the color of an element that is not
in your .Xdefaults file. You can add that element to the file by typing it in
.Xdefaults on a line by itself using the following syntax:

color name }

clientxresource: .
{ #hezadecimal

For client, you can use any valid viewable X client. For resource, you can
use any valid color resource for that client. The surrounding lines in the file
provide you with examples to model your line after. You can find a complete
list of the resources for each client in the reference section.

The color you specify can be a color name from the /usr/1ib/X11/rgb.txt
file or a hexadecimal value. While color names are easier to remember,
hexadecimal values enable you to specify a greater variety of colors.

A hexadecimal value is composed of three segments, one segment for each of
the primary colors red, green, and blue. A hexadecimal value consists of a
number sign (#), signaling the start of a hexadecimal number, followed by 1, 2,
3, or 4 hexadecimal digits for each primary color. Thus a valid color value can
be 3, 6, 9, or 12 hexadecimal digits.

For example, #3a3 and #300a00300 are both valid color values for the same
color, a shade of green. The number of digits you use in color values depends
on your need for subtle shades of color and the capability of your display
hardware.

Examples

The following examples illustrate some typical lines in your .Xdefaults that
color client elements.

XClock*foreground: Black
XClockx*background: White
XClock*hands: SkyBlue
XClock*highlight: Black

The above lines color the elements of the xclock client. The first line makes
the tick marks of an analog clock (and the readout of a digital clock) black.

5-6 Customizing Your Local X Environment

The next line gives it a white background (face). The next two lines color the
hands of an analog clock skyblue with black borders.

When coloring client elements, you should usually color adjacent elements

in contrasting colors. The obvious mistake is coloring clock hands the same
color as the background. Sure, the hands display in the color you select, but
it’s frightfully hard to tell the time. The same holds true for foregrounds and
backgrounds that lack sufficient contrast.

What Colors Are Available

You can color your X11 environment by specifying any of the color names
listed in the following table. Type the color name exactly as it appears below.

Customizing Your Local X Environment 5-7

Table 5-4. X Window System Color Name Table

Available Colors
Aquamarine Black Blue BlueViolet
Brown CadetBlue Coral CornflowerBlue
Cyan DarkGreen DarkOliveGreen | DarkOrchid
DarkSlateBlue DarkSlateGray DarkSlateGrey DarkTurquoise
DimGray DimGrey Firebrick ForestGreen
Gold Goldenrod Gray Green
GreenYellow Grey IndianRed Khaki
LightBlﬁe LightGray LightGrey LightSteel Blue
LimeGreen Magenta Maroon MediumAquamarine
MediumBlue MediumForestGreen | MediumGoldenrod [MediumOrchid
MediumSeaGreen | MediumSlateBlue MediumTurquoise | MediumVioletRed
MidnightBlue Navy NavyBlue Orange
OrangeRed Orchid PaleGreen Pink
Plum Red Salmon SeaGreen
Sienna SkyBlue SlateBlue SpringGreen
SteelBlue Tan Thistle Transparent
Turquoise Violet VioletRed Wheat
White Yellow YellowGreen

Where to Find the Available Color Names

All of the color names available in the X Window System are listed in the
/usr/1ib/X11/rgb.txt file. You can find the names of colors by typing the
following command to view the file:

more /usr/1ib/X11/rgb.txt

5-8 Customizing Your Local X Environment

The file is several “pages” long, so you may find it more convenient to make a
printed copy of the file using the following command:

pr -160 -h "X11 Color Table" /usr/lib/X11/rgb.txt | 1lp

Determining Where to Color Your Environment

The usual place to specify colors is in the .Xdefaults file in your home
directory. However, you can change the color of a particular instance of an
element (such as the foreground color of a single window) by specifying that
color on the command line that starts the client. If you start the client when
you start X11, the command line would be in the .x11start file. If you start
the client from a menu, the command line would be in the .mwmrc file.

For example, if you wanted an hpterm window to have a DarkSlateGrey
background and White foreground, you could specify these colors on the
command line you used to start the window.

Coloring a Single Instance of a Client

The following command, issued at the command line prompt, overrides

any background and foreground colors specified in the .Xdefaults file and
creates a single hpterm window with a DarkSlateGray background and White
foreground.

hpterm -bg DarkSlateGrey -fg White &

This syntax should be familiar to you if you have read chapter 4.

Coloring Windows that Start Automatically

The following line in your .x11start file overrides any background and
foreground colors specified in the .Xdefaults file and creates an hpterm
window with a DarkSlateGrey background and White foreground each time
you start X11.

hpterm -bg DarkSlateGrey -fg White &

Note that the syntax of the above example is exactly like the syntax used when
you start a client from the command line.

Customizing Your Local X Environment 5-9

Coloring Windows that Start from Menus

The following line in your .mwmrc file overrides any background and foreground
colors specified in the .Xdefaults file and, when you choose the Dark Window
selection from the menu, creates an hpterm window with a DarkSlateGrey
background and White foreground.

"Dark Window" f.exec "hpterm -bg DarkSlateGrey -fg White &"

This syntax is similar to the command-line syntax with which you are already
familiar. You’ll learn more about it in “Managing Window Manager Menus” in
chapter 6.

Coloring ‘hpterm’ Softkeys and Scrollbars

To color hpterm softkeys or scrollbars, you may need to add one or more lines
from the following table to your .Xdefaults file:

Table 5-5.
You Can Color These ‘hpterm’ Softkey and Scrollbar Elements
To color this element . .. Add this line ...
softkey text HPterm*softkey*foreground:
softkey background HPterm*softkey*background:
top and left softkey bevel HPterm*softkey*topShadowColor:

bottom and right softkey bevel HPterm*softkey*bottomShadowColor:

top and left softkey bevel tile HPterm*softkey*topShadowTile:

bottom and right softkey bevel tile | HPterm*softkey*bottomShadowTile:

scrollbar foreground HPterm*scrollBar*foreground:

scrollbar background HPterm*scrollBar*background:

The lines you add to the .Xdefaults file all have the following syntax:

softkey color
HPtermx *resource:

scrollBar #hexadecimal

5-10 Customizing Your Local X Environment

The color you select can be either a color name (Magenta) from the rgb.txt
file or a hexadecimal value (#ffe000ffe).

For tile, you can select a number of tile “patterns.” For a complete list see
“Changing the Tiling of Window Frames” in Chapter 6.

Changing the Clients that Start When You Start X

By modifying the .x11start file in your home directory, you can control which
clients appear as part of your environment when you start X.

Copying ‘sys.x11start’ to ‘.x11start’

The clients that start by default when you start X are specified by command
lines in the sys.x11istart file. To change the clients that start in your
personal X environment from the default (hpwm and an hpterm window), copy
sys.xlistart from the /usr/1ib/X11 directory to your home directory.

cp /usr/1lib/X11/sys.xiistart $HOME/.x1istart

This gives you a read-only copy of .x11start. You must make the .x11istart
file writable so that you can modify it. To do this type, the following '
command;

chmod u+w .xllstart

This will enable you to change the clients that start in your environment
without affecting the environments of other users on the system.

If you accidentally ruin the .x11start file during the editing process, you can
always make a fresh copy from /usr/1ib/X11/sys.x11start and begin the
editing process again.

Customizing Your Local X Environment 5-11

Viewing X11 Start Error Messages

The x1istart command records any messages that occur as X11 starts.
Viewing these messages is an important tool for finding errors in your
configuration files. The start command puts messages in the .x11startlog file
in your home directory.

If you start X11 and your environment displays as expected, no error messages
will be generated and .x11startlog will be empty.

However, at some point you may start X11 and your environment does not
display as expected. For example, maybe one of your terminal windows doesn’t
display. To view any error messages that occurred, type the following at the
command-line prompt in your home directory:

more .xlistartlog

Any error messages in the file will be listed on the screen and, although
decidedly cryptic in nature, they at least provide a starting place for locating
the cause of the error.

Starting a Different Window Manager

The OSF/Motif Window Manager is the default window manager of your X
Window System. However, two other window managers are included with the
X Window System— hpwm (HP Window Manager) and uwm. The differences
among the three window managers are covered in appendix A.

To use the hpwm or uwm window manager instead of the OSF/Motif Window
Manager, follow these steps:

1. Start your text editor and open the .x11start file.

2. Scroll down or search for the line that reads as follows:
mwm $Q@ & # Start the 0SF/Motif Window Manager

3. Comment out this line by typing a # and a space in the left margin.

4. On a new line at the same location, type one of the following commands:
hpwm $Q@ & # Start hpwm window manager

uvm $@ & # Start uwm window manager

5-12 Customizing Your Local X Environment

5. Save the file and exit the editor.

To put the hpwm or uwm window manager into effect, exit the X Window
System by pressing (CTRL) (Left Shift) (Reset). Then restart the window system
again.

Starting Programs Automatically

If you’d like to start more than mwm and a single hpterm window when you
start X11, you need to add a few more lines to your .xiistart file—one line
for each client or non-client you want to start.

Syntax and Examples

The syntax for starting a program automatically matches the syntax for
running the program from the command-line prompt:

client [-options] [&]

Starting Clients

Follow these steps to add other clients to your X11 environment:

1. Start your text editor and open .x1llstart.

2. Scroll down or search for the line that reads as follows:
hpterm -C -geometry 80x24+1+1 $@ &

3. On the lines below this, insert command lines for each client you want to
start, one client per line.

4. When you’re finished, check your syntax and spelling. If all is correct, save
the file and exit the editor.

For example, the following two lines start a clock and an hpterm window as
part of the initial X environment:

xclock -digital -update 10 -geometry 160x30-1+1 &
hpterm -geometry 80x24-1-1 &

The first line adds a 160x 30 pixel digital clock to the upper right corner of
the screen. The clock is updated every 10 seconds. The second line starts an
80 column by 24 line hpterm emulation window in the lower right corner of the

Customizing Your Local X Environment 5-13

screen. Both clock window and hpterm window are the default colors specified
in .Xdefaults or /usr/1ib/X11/sys.Xdefaults.

Note that both lines end with an ampersand (&), telling the system to start
these clients as background processes. Note also that the geometry dimensions
of clients like the clock are in pixels; however, the dimensions of terminal
windows are in columns (characters across) and lines (characters down).

Starting Non-Clients

Starting non-clients (commands or programs) automatically is similar to
starting clients. Follow these steps to add non-clients to your X11 environment:

1. Start your text editor and open .x11istart.
2. Scroll down or search for the line that reads as follows:
hpterm -C -geometry 80x24+1+1 $Q &

3. On the lines below this, insert command lines for each non-client you want
to start, one non-client per line. Remember that a non-client, because
it does not create its own window, is started by the -e option (e for
“execute”) from an hpterm or xterm window.

4. When you’re finished, check your syntax and spelling. If all is correct, save
the file and exit the editor.

For example, the following two lines start mailx, an electronic mail program,
and login to a remote host, hpcvfaa:

hpterm -e mailx &
hpterm -e rlogin hpcvfaa &

Both windows that contain the two non-clients are the default size and colors.
Notice also that, in this example, they are both at the default location, so
first one appears and then the other appears right over it—usually not the
best practice. A better way is to include a geometry option for one or both
windows. Another alternative is to use a -iconic option for one window:

hpterm -iconic -e mailx &
hpterm -e rlogin hpcvfaa &

This modified example starts the mailx window as an icon. Only when you
want to read mail do you need to change the icon into a window.

5-14 Customizing Your Local X Environment

Discovering Your Options

The following tables repeat the client option information from chapter 4 so you
can avoid excessive page churning caused by flipping back and forth.

Table 5-6. Color Options for Viewable X11 Clients

Option Descriptions X11 Clients
To change this ... |Use this option ... |[hpterm |xterm|xclock [xload
Foreground color. |-fg color v Vv Vv VA
Background color. |~bg color v v Vv V4
Cursor color. ~cr color V4 V4
Pointer color. -ms color v v
Clock hands color. |-hd color Vv
Hand edge color. |-hl color Vv V4

Customizing Your Local X Environment 5-15

Table 5-7. Other Options for Viewable X11 Clients

Option Descriptions X11 Clients
To change this ... Use this option . .. hpterm | xterm | xclock | xload
Client location. -geometry wXxhxtcoltrow Vv Vv Vv Vi
Font Displayed. -fn font Vv Vv Vv Vv
Update interval. -update number V4 Vv
Clock chime. —chime Vv
Analog clock. -analog Vv
Start a program. -e command Vv Vi
Name of icon. -n name Vv Vv
Title of window. -title title V4 Vv
Window name. -name name V4 Vv Vv
Start client as icon. | -iconic V4 Vv v V4
Where client displays. | ~display host:display.screen| +/ Vv Vv v

You can control the size and location of each viewable client you add to your
.x11start file using the -geometry option. If you don’t specify a -geometry
option, the client appears in the default size and at the default location.

The syntax of the -geometry option is as follows:
-geometry widthX height[+zty]

The size (widthX height) is in characters by lines for terminal windows, and in
pixels for clocks and load histograms. The location (+z+y) is in pixels and
depends on the resolution of your screen. Plus values (+) start at the upper
left corner of the screen and proceed down and to the right. Minus values (—)
start at the lower right corner of the screen and proceed up and to the left.

The following table lists some typical locations for a 1280%x1024 high-resolution
display.

5-16 Customizing Your Local X Environment

Table 5-8. Sample Locations for an 80x24 X11 Terminal Window

To position a window here . .. Use this location . ..

The upper left corner of the root window. +1+1
The lower left corner of the root window. +1-1
The upper right corner of the root window. —-1+1
The lower right corner of the root window. -1-1
The left side at mid-window. +1+512
The right side at mid-window. —14512
The top of the root window and right of center. 463541
Centered at left. +1+330
Centered at right. —-1+330
Centered in the root window. +3204-330

The options listed here are some of the more commonly used ones. For a
complete list of options for each client, see that client’s pages in the reference
section.

Starting X11 at Login

You can configure your system to start the X Window System at login in two
ways:

m Use the HP-UX SAM program to add a new account to the system, specifying
“X11 Windows” at login.

m Edit your existing .login or .profile login file to include the x11start
command.

If your login isn’t already configured to start X11 automatically, you can edit
your login file to do so. If you are adding a new login to your system, you can
use the SAM program to tell the system you want X11 at login.

Customizing Your Local X Environment 5-17

The rest of this section explains how, if you currently have a login on the
system, you can edit your .login or .profile file so that when you log in,
your X environment starts automatically.

Modifying Login Files

Which login file you edit depends on which shell command interpreter you use.
If you use the C shell, edit .1ogin. If you use the Bourne or Korn shell, edit
.profile. \

Finding Out Which Shell You Use

If you are not familiar with which shell you use, type:

This command lists your environment variables. Look for the one named
SHELL.

Table 5-9. The Environment File for your Shell

If yousee ... |Edit...

SHELL=/bin/csh | login

SHELL=/bin/sh | .profile

SHELL=/bin/ksh | .profile

Editing the File

Once you have determined the proper login file to edit, use vi or some other
editor that produces text files to make the following modification to the bottom
of the file.

If you use the C shell, follow these steps to modify your .login file:
1. Copy your original .login to .login.old (just in case).

2. Start your text editor and open .login.

3. Page or scroll down to the bottom of the file.

4. Insert the following lines at the bottom of the file:

5-18 Customizing Your Local X Environment

if ("‘who am i | grep console‘" != "") then
exec fusr/bin/xiistart
endif

5. Save your edited file and exit the text editor.

If you use either the Bourne or the Korn shell, follow these steps to modify
your .profile file:

1. Copy your original .profile to .profile.old (just in case).
2. Start your text editor and open .profile.

3. Page or scroll down to the bottom of the file.

4. Insert the following lines at the bottom of the file:

if ["‘who am i | grep console‘" != "]
then

exec /usr/bin/xiistart
fi

5. Save your edited file and exit the text editor.

These lines verify that you are logging in from the console, and not from

a remote location, before starting X11 on your system. This avoids the
possibility of undesirable effects caused by inadvertently starting X on your
system from a remote login.

Viewing the Result of Your Edit

To view the result of your edit, exit the X Window System by pressing
simultaneously. Remember to use the left key.

When the command-line prompt returns to the screen, you can either log out
and then log back in, or type source .login (if you use the C shell), or type
. .profile (if you use the Korn shell or Bourne shell) to restart X11.

After a few seconds, your system should start the X Window System. From
then on, whenever you login, X11 will start automatically.

Customizing Your Local X Environment 5-19

Using the ‘SAM’ Program

You can also

start the X Window System automatically for a new user by

adding the user with the SAM program.

Before you run SAM, you must be superuser. As one of the options of “Add a
new user”, select the X Window System to start at login.

Creating Custom Bitmaps with ‘bitmap’

Using the bitmap client, you can create your own custom bitmaps and use
them to tile your root window, to customize root-window cursor shapes, or to
customize menu selections.

Syntax and Options

The syntax for bitmap is as follows:

bitmap

-help
-display

-geometry

--help

-display host:display.screen
-geometry wX htcoltrow
-nodashed

-fn font

-fg color

-bg color

-hl color

filename Widthx Height

-ms color

~name name

Prints a summary of the command usage.
Specifies the screen where bitmap is to appear.

Sets the size of the bitmap window to the specified
widthxheight and locates the window at the specified column
and row.

5-20 Customizing Your Local X Environment

-nodashed Specifies the bitmap grid should use solid lines.

-fn Specifies the font to use in the bitmap command panel labels.

-fg Specifies the foreground color.

-bg Specifies the background color.

-hl Specifies the color of the highlight used to mark the center of a
circle (the hot spot) and move areas.

-ms Specifies the color of the pointer.

-name Specifies a variable name to use when writing to a bitmap file.

filename Specifies the name of the bitmap file to open or create.

Widthx Height The size of the bitmap itself. Width and height are measured
in pixels with one pixel equal to one cell on the bitmap grid.

Using ‘bitmap’

The bitmap client displays a variable-size grid, a command panel (on the
right), and two “preview” bitmaps. You operate bitmap by using mouse
buttons to “draw” pixels in the grid, one pixel per cell, and by making
selections from the command panel. The preview bitmaps enable you to see
how your art work looks in regular and reverse video.

Customizing Your Local X Environment 5-21

Clear All]

[setAal]

L _tnvert All

Clear HotSpot

[Write Output]

Figure 5-1. The ‘bitmap’ Client Creates Custom Bitmaps

Currently, bitmap uses the button definitions in the following table:

Table 5-10. Mouse Button Definitions for ‘bitmap’

If you see ... On a 2-button mouse press ... On a 3-button mouse press . ..
Button 1 The left button. The left button.
Button 2 Both buttons simultaneously. The middle button.
Button 3 The right button. The right button.

5-22 Customizing Your Local X Environment

The following table shows how to use the grid portion of tlie bitmap window:

Table 5-11. How to Use the ‘bitmap’ Grid

If you want to ... Do this ...
Draw a pixel. Change a cell from background to Click button 1 on the cell.
foreground color.
Invert a pixel color. Change a background colored Click button 2 on the cell.
cell to foreground or a foreground colored cell to
background.
Clear a pixel. Change a cell to the background color. Click button 3 on the cell.

The following table shows how to use the command panel portion of the
bitmap window:

Customizing Your Local X Environment 5-23

Table 5-12. How to Use the ‘bitmap’ Command Panel

If you want to ... Click button 1 on ...

Set (clear) all cells of the grid to the background color. | Clear All

Set all cells of the grid to the foreground color. Set All

Set all background colored cells to foreground and all Invert All
foreground colored cells to background.

Set (clear) an area of the grid to the background color. |Clear Area.

Set an area of the grid to the foreground color. Set Area.

Set any background colored cells in an area of the grid |Invert Area
to foreground and any foreground colored cells in that
area to background.

Copy one area of the grid to another. Copy Area
Move an area of the grid to another position. Move Area
Place one area of the grid over another. Overlay Area
Draw a line between two points. Line

Draw a circle with a given center and radius. Circle

Draw a filled (foreground colored) circle with a given Filled Circle

center and radius.

Fill an enclosed (bounded) area. The area must be Flood Fill
completely enclosed.

Set a “hot spot” to mark the location of the cursor on a |Set HotSpot
cursor bitmap.

Erase a “hot spot” from a cursor bitmap. Clear HotSpot

Save the bitmap to the file specified on the bitmap Write Output
command line.

Exit the bitmap client. Quit

5-24 Customizing Your Local X Environment

Examples

The following examples illustrate some of the possibilities when creating
custom bitmaps with bitmap.

Creating an Icon Image

You can create a 50 by 50 pixel icon image that you can use for a particular
client such as hpterm windows. The following bitmap is one example:

[__Clear Al]
[Set All]

Clear Area

[_Set Area |
Invert Area |

[Copy Area]
Move Area_|
i [Overlay Area

[Line
| Gircle]
[Filled Gircle]

[Flood Fill_|

[Glear HotSpot]

L

Figure 5-2. A Custom Icon Bitmap

Customizing Your Local X Environment 5-25

If you name this bitmap “peacock.bits” and keep it in the “/bits directory,
where ~ stands for the path to your home directory, you can use the bitmap as
an image for hpterm icons by inserting a line similar to the following in your
.Xdefaults file:

Mwm*HPterm*iconImage: ~/bits/peacock.bits

Whenever you iconify an hpterm window, your peacock will appear as the icon.

Creating Root Window Tiles

You can create tiles of any size with which to pattern your root window. One
such pattern is the following:

5-26 Customizing Your Local X Environment

[__Glear Al]
[Clnvert All_]

[Set Area_]

[Gopy Area |
Move Area

[Overlay Area]

[Tne]
[Gircle]
[Filled Gircle”]

Flood Fill
| Set HotSEot

[Clear HotSpot]

A R AL A A S LA e i

Wri Outp

[Quit

Figure 5-3. A Custom Bitmap for That Spacious Look

This pattern, called for lack of a better name “space.bits,” is a random pattern
of foreground-colored pixels. Using the xsetroot client described shortly, you
can use this bitmap for a truly cosmic effect.

Creating Custom Cursors and Masks

Creating a custom cursor (pointer) requires you to make a cursor bitmap and
a cursor mask bitmap. The mask provides a background for the cursor and
prevents the pixels over which the cursor moves from showing through the
cursor bitmap.

Customizing Your Local X Environment 5-27

For example, because the preceding example gave you some space to play with,
you might want to create the following cursor, named “shuttle.bits,” to help
you get from window to window.

Invert All

R T

Clear_Area
Set_Area
invert Area

Copy Area
Move Area |}
Overlay Area

e —— g

iR R s R s e Tl R

—

g

Flood Fill

lear HotSpo

Write Output | i

.
&
e
'ié

L
it

Figure 5-4. A Custom Cursor for Navigating Large Spaces

Note the hotspot at the tip of the shuttle’s nose. A hotspot is the single pixel
that has been designated as the “point” of the pointer.

The following mask, “mask.bits,” is made by inverting the original cursor and
adding a few extra lines for shading;:

5-28 Customizing Your Local X Environment

e

s

iy

Figure 5-5. A Custom Mask for Navigating Large Spaces

You employ your custom cursor and mask bitmaps using the xsetroot client

described next.

Customizing Your Local X Environment 5-29

Customizing the Root Window with ‘xsetroot’

The xsetroot client enables you to customize the appearance of the root
window. You can add color and pattern to the root window, or modify the
shape of the cursor when it’s in the root window.

Syntax and Options

The xsetroot client has the following syntax:

xsetroot

-help
-def

-cursor

-bitmap

-mod

-gray
..fg
-bg

[-help

-def

-cursor path/cursor path/mask
~-bitmap path/bitmap

-mod z ¥y

-gray

-fg color

-bg color

-Tv

-solid color

| -display host:display.screen

Prints a summary of the command usage.

Resets unspecified root window attributes to their default
values.

Specifies the cursor bitmap and mask bitmap to use for the
root window cursor.

Specifies a bitmap file with which to tile the root window.

Specifies a modular grid of dimensions z by y in the foreground
color, making a plaid pattern.

Specifies gray (or grey) for the color of the root window.
Specifies color as the foreground color.

Specifies color as the background color.

5-30 Customizing Your Local X Environment

TV Swaps foreground and background colors.
-solid Specifies the root window should be colored a solid color.

-display Specifies the host, display number, and screen number of the
root window to change.

Examples

The following examples employ the bitmaps created in the last section.

Changing the Root Window Tile Pattern

To change the tile pattern of the root window to a bitmap such as the
“space.bits” bitmap, use the following line:

xsetroot -bitmap “/bits/space.bits

This line assumes that you keep your bitmaps in a subdirectory of your home
directory called bitmaps. The actual xsetroot command can be issued either
from the command line once you’ve started X or from a line in your .x11start
file (in which case the changes are made as X11 starts).

Changing the Root Window Cursor

To change the shape of the root window cursor to a bitmap such as the
“shuttle.bits” bitmap created above, use the following line:

xsetroot -cursor ~/bits/shuttle.bits ~/bits/mask.bits

Again, you can issue this line either at the command-line prompt once you’ve
started X or include it as part of your .xi1start file. Remember, the ~
signifies the path to your home directory.

Customizing Your Local X Environment 5-31

Working with Fonts

The X Window System includes a variety of fonts. A font is a type style, that
is, a style in which text characters are printed. For example, the text of most
newspapers is printed in the Times Roman font, while the headlines are usually
printed in Helvetica.

What Fonts are Available?

Fonts are stored within subdirectories of the /usr/1ib/X11/fonts directory, as
shown in the following diagram.

. 75dpi/
iso_8859. 1/ -1 19@dpi /

Jusr/ 11b/%11/fonts/ -| hp_roman8/ —— 75dpi/

_ variable.scf
misc/ fixed.scf
cursor. scf

¢(NL/I0 Font Directories)

Figure 5-6. The Font Directory Structure

To view what fonts are available in each directory, type:

1s -p directory

5-32 Customizing Your Local X Environment

Note The examples in this section use fonts from the
§ /usr/1lib/X11/fonts/hp_roman8/ directory, which was
% installed with the fileset X11_FONTA. If you do not have this
directory, these examples will not work for you as written.
Find the font directory you do have, and use names from that
directory instead.

Specifying a Font

Whenever a command or client option calls for fontname, you may refer to the
font in either of two ways:

m Specify the font’s characteristics.

m Provide an “alias” for the font.

Font Characteristics

You may refer to a font by specifying a list of its properties. Any property in
the list can be replaced by “*” wild card. Any character in a property can be
replaced by a “?” wild card. The server will neither accept nor reject a font
based on a particular property if that property is specified by a wild card.

The form of the property string specification is:

U FontName Registry- Foundry- FamilyName- Weight Name-Slant
-SetwidthName- AddStyle Name- PizelSize- PointSize- Resolution X
- Resolution Y- Spacing- Average Width- CharSetRegistry - CharSetCoding"

FontNameRegistry A string that defines the authority that registered the

font.
Foundry A string giving the name of the foundry or font
designer.
FamilyName The trademarked commercial name of the font
WeightName A string describing the relative weight of the font, such

as bold. For human reference only.

Slant A code indicating whether the font slants to the right,
left, or not at all.

Customizing Your Local X Environment 5-33

SetwidthName

AddStyleName

PixelSize
PointSize

ResolutionX
ResolutionY

Spacing

AverageWidth

CharSetRegistry

R Roman

I Italic

0] Oblique

RI Reverse italic
RO Reverse oblique

A string describing the width-per-unit of the font, such
as compressed or expanded.

A string describing anything else needed to uniquely
identify the font, such as serif or cursive. Human
reference only.

An integer describing the size of an EM square. An EM
square is the size of a box surrounding an M.

An integer giving the EM square size in points (72.27
points = 1 inch)

The horizontal (X) and vertical (Y) resolution of the
device that the font was designed for, measured in
pixels-per-inch.

A code indicating the spacing between units in the font.

M Monospaced (fixed pitch)
P Proportional spaced (variable pitch)
C Character cell. The glyphs of the font can be

thought of as “boxes” of the same width and
height that are stacked side by side or top to
bottom.

An integer string giving the average, unweighted
width of all the glyphs in the font, measured in 1/10th
device-dependent pixels.

A string identifying the registration authority that
registered the specified CharSetEncoding. This is
typically the organization and a specific standard
number, such as ISO8859 or HP.

5-34 Customizing Your Local X Environment

CharSetEncoding A string identifying the character set fo the specified
registry. For example, if CharSetRegistry is ISO8859,
then CharSetEncoding “4” identifies the ISO08859.4
character set. If CharSetRegistry is “HP”, then

CharSetEncoding “roman8” identifies the HPROMANS
character set.

For example:
-adobe-courier-bold-o-normal--10-100-75-75-m-60-hp-roman8

specifies a courier, bold, oblique font created by Adobe. The font is 10 pixels
tall, 100 tenths of a point tall on a 75dpix75dpi display. Characters are
monospaces, and are an average of 60 tenths of a point wide. Fonts codes are
based on the HPROMANS encoding.

You may use either upper-case or lower-case letters when you specify a
characteristic.
The ‘fonts.dir’ File

The server associates the font file name and the font property string by means
of the fonts.dir file. This file is created by the font installation process or by
executing the mkfontdir utility.

You can view the font characteristics for all the fonts in the directory by
typing;:

more font directory/fonts.dir

If you specify a font using wild cards (* or 7), the server will select the first
font in fonts.dir that matches the properties that you did specify.

For example, if your fonts.dir file looked like this:
3
helv008.scf -Adobe-Helvetica-Medium-0-Normal--8-80-75-75-P-47-HP-ROMANS

helvB008.scf -Adobe-Helvetica-Bold-0-Normal--8-80-75-75-P-48-HP-ROMANS8
helvR08.scf -Adobe-Helvetica-Medium-R-Normal--8-80-75-75-P-46-HP-ROMANS

then if you ask for

"k-kx-Helvetica-Medium—-*-%-%~k—-%-%-%—-%-k-HP-ROMAN8-*"

Customizing Your Local X Environment 5-35

the first font, helv008.scf, will be used.

After the fonts.dir file is created or updated, run the following command to
inform the server of the change:

xset fp rehash [Return]

Font Aliases

A font can be referred to by an alias. The alias is shorter and easier to
remember (and type) than the complete font description.. Aliases are found in
the fonts.alias file for each directory. A simple fonts.alias file is created
as part of installing the font.

The fonts.alias file provides for two types of aliases:
m File name.

If the string "FILE_NAMES_ALIASES" occurs in the fonts.alias file, then
the font can be referred to by its file name alone, without the path name or
extensions (.snf for server natural format or .scf for server compressed
format).

Although font names have extensions, usually a .snf (server natural format)
or .scf (server compressed format), you don’t have to type the extension
when you specify a font.

® A name you select.

You can specify what alias to use for referring to a font. This helps
avoid confusion if you are using fonts with the same name from different
directories. You provide the alias name you want to use and the font
property string, as shown in the following example.

If this is the fonts.alias file in your /usr/1ib/X11/fonts/hp_roman8/75dpi
directory,

"FILE_NAMES_ALIASES"

courbold *-adobe-courier-bold-r-normal-*-8-80-75-75-m-50-hp8-roman8

then you can refer to the font named courB08.scf in any of the following
ways:

m courBO8

5-36 Customizing Your Local X Environment

The “FILE_NAMES_ALIASES” entry lets you use just the file name.
m courbold

The alias name you specified.
m *-adobe-courier-bold-r-normal-*-8-80-75-75-m-50-hp-roman8

You can always specify the font characteristics, whether or not you have a
fonts.alias file.

B ¥-x-courier-bold-r-normal-*-8-%-%-%-%-*-hp-roman8

You can specify enough of the font characteristics to identify the font
characteristics you want, and have the rest as wildcards. X11 selects the first
font in its search path that matches the specification.

Changing the Alias Search Path

When you specify a font by its alias, by default the server searches the
following directories until it finds a match for the alias in one of the directories.

/usr/1ib/X11/fonts/hp_roman8/75dpi
/usr/1lib/X11/fonts/iso_8859.1/75dpi
/usr/1ib/X11/fonts/iso_8859.1/100dpi
/usr/1ib/X11/fonts/misc
/usr/lib/X11/fonts/hp_kana8
/usr/1ib/X11/fonts/hp_japanese/75dpi
/usr/1ib/X11/fonts/hp_korean/75dpi
/usr/1ib/X11/fonts/hp_chinese_s/75dpi
/usr/lib/X11/fonts/hp_chinese_t/75dpi

When the server starts, if any of these directories do not exist, or if a directory
does not contain a fonts.dir file, that directory is removed from the server’s
default search path until the server is restarted.

You can check your current font search path by typing:

xset q

You can change the directories to be searched by using the xset client. (This
section covers only the font functions of xset, chapter 7 explains the other
functions.)

Customizing Your Local X Environment 5-37

xset

-fp/fp-
+fp/fp+

fp= path
fp default
fp rehash

L4

[-fp path[,path...]]
£p- path/,path...]
+fp path/ path...]
fp+ path[,path...]
fp default

fp rehash

£p= path [,path...]

e

Removes the specified directories from the head (-fp) or tail
(fp-) of the font search path.

Prefixes (+fp) or appends (fp+) the specified directories to the
font search path.

Specifies the font search path.
Restores the default font search path.

Causes the server to reread the fonts databases in the current
path—done after new fonts are added or deleted, or after
mkfontdir is run.

Display status information, including the current font search
path.

Adding or Deleting Fonts

If you add one or more fonts to a directory or delete them from a directory:

1. Run the mkfontdir utility program in the directory to which the fonts were
added or deleted to update the fonts.dir file.

2. Edit the fonts.alias file if you want to refer to the font by an alias.

3. Inform the server of the change by typing:
xset fp rehash

5-38 Customizing Your Local X Environment

Choosing Where to Specify a Font

Usually, you specify fonts in the .Xdefaults file in your home directory.
However, you can specify the font of an individual client (such as the text of
a single window) in the command line that starts the client. If you start the
client when you start X11, the command line will be in the .x11start file. If
you start the client from a menu, the command line will be in the .mwmrc file.

Making All Instances of a Client Have the Same Font

By inserting a command line in the .Xdefaults file in your home directory,
you can make every instance of a particular client have the font that you
specify.

The syntax for the line is as follows:

client*fontresource: fontname

The following line in your .Xdefaults file changes the font of every hpterm
window to the monospace font courB08.scf.

HPterm*font: courB0O8

Of course, you can refer to fonts in any of the ways discussed earlier in this
chapter. This example uses the file name as an alias.

If you specify a font for the mwm window manager, use the fontList resource.
For example:

Mwm*fontList: courB08

Specifying the Font of a Window that Starts Automatically

The following line, which uses the standard command-line syntax, in your
.x11start file overrides any font specification in the .Xdefaults file and
creates this particular hpterm window using a font with the alias courB08:

hpterm -fn courB08 &

Specifying the Font of a Window that Starts from a Menu

The following line, which uses the standard menu selection syntax, in your
.munrc file overrides any font specified in the .Xdefaults file and, when you

Customizing Your Local X Environment 5-39

choose the New Window selection from the menu, creates an hpterm window
using a font with the alias courB08:

"New Window" f.exec "hpterm -fn courBO8 &"

Displaying a Font with ‘xfd’

You can display the complete character set of any valid X Window System font
using the xfd client.

Syntax and Options

The syntax for xfd is as follows:

[-rv

-fg color

-bg color

-bf font

-tl title

-in icon

-icon path/bitmap
-verbose

-gray

-start charnumber
-geometry parameters
| -display host:display.screen

xfd -fn fontname

-Iv Switches the foreground and background colors (reverse video).
-fg Specifies the foreground color for xfd.

-bg Specifies the background color for xfd.

-bf Specifies font as the font to use for displaying messages at the

bottom of the xfd window.

-tl Specifies title as the title that should appear in the title bar of
the xfd window frame.

5-40 Customizing Your Local X Environment

-in Specifies icon as the name to use for the icon label when an
xfd client is iconified.

-icon Specifies the path and filename of the bitmap to use as the icon
for the xfd client.

-verbose Displays additional information about a character including;:
left bearing, right bearing, ascent, descent, and width.

-gray Specifies a gray background.

-start Specifies that character number charnumber should be the first

character displayed (the character in the upper left corner).

-geometry Specifies the size (widthxheight) and location (*column+trow)
of an xfd window.

-display Specifies the host, display number, and screen number on
which to display xfd.

-fn fontname Specifies the font to display. If an invalid name, or no specified,
you get a “usage” message.
Using ‘xfd’

The xfd client creates a 16 by 16 grid by default, but you can change the size
using the -geometry option. Each cell of the grid, starting at the upper left
corner, contains a character of the font named on the command line.

Currently, xfd uses the button definitions in the following table:

Table 5-13. Mouse Button Definitions for ‘xfd’

If you see ... On a 2-button mouse press ... On a 3-button mouse press . ..
Button 1 The left button. The left button.
Button 2 Both buttons simultaneously. The middle button.
Button 3 The right button. The right button.

Customizing Your Local X Environment 5-41

Use the following actions to operate the xfd client:

Table 5-14. Using the “xfd’ Client

If you want to ...

Do this ...

Page forward to see characters from the
specified font that are not currently
displayed.

Position the pointer on the xfd window
and click button 3.

Page backward to see the previously
displayed characters.

Position the pointer in the xfd window
and click button 1.

Display the character set starting with a
particular character.

Use the -start charnumber option on
the command line when you start xfd.

Show the decimal and hexadecimal value
of a character.

Position the pointer in the grid for that
character and click button 2.

Show additional information about a
character set including left bearing, right
bearing, ascent, descent, and width.

Use the -verbose option on the
command line when you start xfd.

Example

The following command line starts an xfd window displaying a font wish the
alias courBO10 in verbose mode. The name of the font appears as a reminder

in the title bar.

xfd -verbose -tl courB014 -geometry 300x300-1-1 -fn courB014 &

The window has a 300 by 300 pixel size and appears in the lower right corner
of the screen. Remember, you can use the full font specification, rather than

the alias as shown in the example.

5-42 Customizing Your Local X Environment

The result of issuing this command line is as follows:

LARdEAFAE

&l 711D *1+],1-|- |/|0|2|2|2{42|5]|6]|7]|8

g1:1;1<|=|>|?2|@|4|B|C|D\E\F|CH|I|JIK

LM\ N O\P|Q|IR\S|T|O|VHX|Y|Z|I £V F”

_| ‘|ald|c|d|e| flglhli|F|k|I|mn|ojp|g
Iris|t|u|v|wix|y|z|{|/|}|~

A EEF I

[-1a|al£] - |2l | o e |e|#{a] i || =] £] %S|

rlel3|éldld|a|élolalalé|olalale|olald]

i|olxla|i|el=|d|1|0|0(&|1|8|0|4d]|d]|a||

| character # = 36 (0x24):

left bearing = 1, right bearing = 9
ascent = 10, descent = 2

Figure 5-7. CourBO10 Character Set

You can display information about a character by positioning the pointer on
that character and clicking button 2. The figure above shows information for
the $ character (charnumber = 36) at the bottom of the window.

If the information is too large to be shown in the geometry you specified, you
can see other “pages” by positioning the pointer anywhere in the window and
clicking button 3.

Customizing Your Local X Environment 5-43

Using Remote Hosts

Part of the potential of the X Window System is that it enables you to be in
two places at once—sort of. You can be logged into your local system working
locally and, at the same time be logged into one or more remote hosts.

Gaining Access to Remote Hosts
To gain access to a remote host, you must have the following:

m The address and hostname of the remote host listed in your system’s
/etc/hosts file.

m A valid login (username and password) and home directory on the remote
host.

To run clients on the remote system and have them display on your local
system:

m The hostname of the remote host listed in a /etc/X0.hosts file on your
system.

To move files between systems:

m Your system listed in a ,rhosts file in your home directory on the remote
host. ‘

m The hostname of the remote host listed in a .rhosts file in your home
directory on your local system.

Setting Up a Login on a Remote Host

To set up a login on a remote host, you need to check that the remote host has
a valid internet address and hostname in your system’s /etc/hosts file, the file
that tells the system the address of the other systems on the network.

Also, you need to talk to the system administrator for the remote system. You
will need a username, password (if necessary), and a home directory on that
system. That way, when you log into the remote host, the remote host will
know who you are and where you belong in the directory structure.

5-44 Customizing Your Local X Environment

Setting Up an ‘X0.hosts’ File

The remote host must have permission to connect to your display server
and display a client program. It gets this permission by being listed in the
/etc/X0 .hosts file on your system. The X0.hosts file is an ASCII file that
contains the hostnames of all remote hosts that have permission to use your
server to display clients on your display screen. Each hostname occupies a
separate line as follows:

host1
host2
host3

You can create the file for yourself using any ASCII text editor, or you can use
the xhost client described below to dynamically add or delete hosts. Changes
made with xhosts are in effect only for the length of your X session.

Note that the “0” of X0.hosts signifies a particular display (combination of
sereen, keyboard, and mouse) on your system. This is typically the console.

If you have another display configuration, you may need another host file.

For example, if you are the second display on a system, your host file would
probably be X1 .hosts. A “display” can be either physical (for example, display
0 could correspond to seat 0) or “logical” (for example, if you switch between
several configurations, your display could have several logical display numbers,
one for each different configuration). For more information, see chapter 7.

Preparing a “.rhosts’ File

A .rhosts file, placed in your home directory, enables any remote host listed in
the file to connect to your system using your login account without having to
go through the drudgery of formally logging in and giving a password.

Although this may be convenient to you, it may present an undue opportunity
to someone else.

Note Depending on your situaﬁon, a .rhosts file could undermine
the security of your system and other systems on the network.
Check with your system administrator and analyze the security

needs of your situation to develop an appropriate plan.

Custamizing Your Local X Environment 5-45

The .rhosts file is an ASCII file containing one remote host per line as in the
following syntax:

hostl1 [user]
host2 [user]
host* [user]

To create a .rhosts file, you should be in your home directory. Use the
following steps:

1. Start your editor and open a file called .rhosts.

2. Type the name of the remote host that you want to add.

3. Press to move to the next line.

4. Repeat steps 2 and 3 for each remote host you want to add.
5. Check your spelling, save the file, and exit your editor.

If the user name is not included on the same line as the host name, the
.rhosts file assumes that your remote user name is the same as your local user
name.

Adding and Deleting Hosts with ‘xhost’

The xhost client provides you with a convenient way to dynamically control
access to your local system. Using xhost, you can add or delete a remote
host’s permission to access your local X11 display server.

Note that xhost only adds or deletes a remote host to or from an internal list
created at the start of an X session. It does not change the /etc/X0.hosts
file. To permanently add or subtract access permission you must edit the
/etc/X0.hosts file using an ASCII text editor such as vi.

Syntax and Options

‘The syntax for xhost is as follows:

5-46 Customizing Your Local X Environment

[+] host
~host
xhost +

(no option)

host Adds host to the list of remote hosts with permission to access
your local X server.

+host Adds host to the list of remote hosts with permission to access
your local X server.

-host Deletes host from the list of remote hosts with permission to
access your local X server.

+ Turns off access control, allowing any remote host to access
your local X server.

- Restricts access to your local X server to remote hosts
currently listed in your local /etc/X0.hosts file.

no option Prints the list of remote hosts that currently have access to
your X server.

You can run xhost from the command line at any time you need to change

access to your server or to see the current list of remote hosts with access to
the server. Remember, changes you make using xhost are temporary. They
last only as long as your current X session.

Example

The following example allows the remote host hpcvfgg to access your local
display. As soon as you quit the window system, the access permission is
revoked.

xhost +hpcvigg

Customizing Your Local X Environment 5-47

Starting Programs on a Remote Host

The “Starting Programs” section of chapter 4 covered starting remote clients
and non-clients from the command line. You can, however, start remote
programs without typing a lengthy command after the command-line prompt.

Starting a Remote Program when you start X11

One way to start a remote program, either a client or non-client, is to start
the program when you first start X11. This enables you to have the remote
program as a part of your initial environment.

To start a remote client when you start X11, you need to edit the .x11istart
file in your home directory to include one line for each remote client you want
to start. The lines are similar to the following:

remsh host -n /usr/bin/X11/client ~display host:display.screen [&]

Here host is the name of the remote host. The client can be any X client. And
the -display option specifies the system, display number, and screen number
where the client is to display, typically your local system.

To start a remote non-client when you start X11, edit your .x11start file
to include one line for each remote non-client. The line begins by starting a
remote shell (remsh), then a terminal emulation window in which to run the
non-client, and finally the non-client:

remsh host -n /usr/bin/X111/hpterm ~display host:display.screen -e
non-client [&]

The ~-e option (“e” for execute), when used with an hpterm or xterm client,
executes a command, in this case the non-client.

Note that an alternate syntax is to start an hpterm window and use the -e
option to execute a remote login (rlogin) that makes the window a terminal of
the remote host.

For example, the following lines start a remote login (non-client) and a remote
load histogram (client) on the host hpcvfaa and display the results on the
console of the local system, hpcvfbb:

remsh hpcvfaa -n /usr/bin/X11/xload -display hpcvfbb:0.0 &
hpterm -title "hpcvfaa login" -e rlogin hpcvfaa &

5-48 Customizing Your Local X Environment

Starting a Remote Program from a Menu

Starting a remote program from a menu requires editing the .mwmrc to include
the proper line to start the program. The process is similar to starting the
program from .x11istart.

Use a line similar to the following to start a remote client:

selection £ .exec "remsh host -n /usr/bin/X11/client -display h:d.s &"

To start a remote non-client, use the above syntax, adding a -e option as the
last option before the &. Alternately, create an hpterm window and use -e
rlogin host to start a remote login.

The explanation of this syntax is the same as the syntax used in .x11start
with the exception of selection, the selection that appears on the menu, and
f.exec, the OSF/Motif Window Manager function that starts a process, in this
case an hpterm window.

Example

The following example starts a login on remote host hpcvfaa. The login
process is initiated by choosing the “hpcvfaa Login” selection from the root
menu.

Root Menu Description
Menu DefaultRootMenu

{

"Root Menu" f.title

"New Window" f.exec "hpterm &"

"hpcvfaa Login" f.exec "hpterm -e rlogin hpcvfaa &"
"Shuffle Up" f.circle_up

"Shuffle Down" f.circle_down

"Refresh" f.refresh

no-label f.separator

"Restart" f.restart

}

Customizing Your Local X Environment 5-49

Where To Go Next

This chapter has discussed customizing the operation of your window system
environment to suit your personal needs. There is additional customization
that you can perform beyond what was presented here. Some of it is a little
more difficult to comprehend and it would be a good idea to consult with your
system administrator before attempting to implement some of the changes.

If you are satisfied with the current look and performance of your window
system environment, you may want to stop here, use the system for a few days
or weeks, and then perhaps “fine tune” it based on your experience.

On the other hand, if you are interested in more extensive customizations to
the OSF/Motif Window Manager, in special environment configurations, in
printing, or in graphics, you should read chapters 6, 7, 8, and 9 respectively.

If your interest is in programming, turn to one of the programming manuals.

5-50 Customizing Your Local X Environment

Managing Windows

Managing windows is the job of the window manager. This chapter begins
by briefly mentioning the clients related to window management. But most
of the chapter discusses the nitty-gritty details of how to use the OSF/Motif
Window Manager (mwm), its resources, and functions to manage your window
environment.

It is not necessary to read this chapter to use the window manager or X, but
if your management needs go beyond adding and deleting menu selections,
browsing this chapter should prove interesting. After discussing the clients, the
chapter reviews some familiar aspects of window control, but becomes more
technical once these basics have been covered.

The chapter organizes window manager resources and functions into the
following task-oriented topics:

m Managing the general appearance of window {rames.
m Working with icons.

m Managing window manager menus.

m Using the mouse.

s Using the keyboard.

= Controlling window size and placement.

m Controlling resources with focus policies.

m Adding mattes to client windows.

Managing Windows 6-1

Clients That Help You Manage Windows

Of the clients listed in the reference section of this manual, six are directly
related to window management:

m resize

m xrefresh
m xwininfo
= mwm

m uwm

® hpwm

Resetting Environment Variables with ‘resize’

The resize client resets three environment variables: TERM, LINES, and
COLUMNS. This enables a shell to reflect the current size of its window.

Don’t confuse resize, the client, with f.resize the window manager function.
The f.resize function changes the size of a window, but does not reset any
environment variables. The resize client, on the other hand, does not change
the size of a window, but it does reset the environment variables. Resetting the
environment variables enables non-client programs to adjust their output to the
window’s new size.

When to Use ‘resize’

Use resize whenever you resize a terminal emulator window and want a
non-client program running in that window to reflect the window’s new

size. The resize client is typically used as an argument to the HP-UX eval
command.

Syntax and Options

The syntax for resize is as follows:

6-2 Managing Windows

-C

~h
resize { -s [row col]
-u
-x
-C Resets the environment variables for csh shells.
-h Uses Hewlett-Packard terminal escape sequences to determine

new window size.

-8 Uses Sun escape sequences to determine new window size. New
row and column sizes are specified with row and col. col

-u Resets the environment variables for sh and ksh shells.
-X Uses VT102 escape sequences to dermine new window size.
Example

To see what the current COLUMN and LINES settings are, type the following
command:

resize

After you have resized a window either by dragging the window frame or by
choosing the “Size” selection from the window menu, you xan reset the LINES,
and COLUMN environment variables to reflect the new window size by issuing
the following command:

eval ‘resize®

If you find yourself typing the above command too often, you can make things
a little easier on yourself. If you use csh, try using an alias. The following line
in your .cshrc file enables you to run resize by typing xr.

alias xr ’set noglob; eval ‘resize‘’
If you use sh or ksh create an xr function like the following:

xr() d{eval ‘resize‘;}

Managing Windows 6-3

Repainting the Screen with ‘refresh’

The xrefresh client “repaints” the screen or a specified portion of the screen.
It does this by mapping, then immediately unmapping, a window over the area
to be repainted. This obscuring-unobscuring causes the area to be redrawn.
Repainting a screen removes the “graphics litter” that occasionally disfigures a
screen.

The xrefresh client performs a similar task to the f.refresh window
manager function. However, the xrefresh client, because of its options, is
more versatile.

When to Use “xrefresh’

You can use xrefresh from the command line of any terminal window and,
using the -display option, you can repaint any display.

Syntax and Options

The syntax for xrefresh is as follows:

- £ -

-white
-black
-solid color
xrefresh -root
-none
-geometry widthx height+tcolumnzrow
| -display host:display.screen

-white Uses a white window to map the screen.

-black Uses a black window to map the screen.

-solid Uses a color colored window to map the screen.

-root Uses the root window to map the screen,

-none Uses a transparent window to map the screen (default).
-geometry Repaints a widthx height region located at tcolumnztrow on

the screen (dimensions are in pixels).

6-4 Managing Windows

-display Specifies the screen to refresh.

Example

The following example illustrates using xrefresh from the command line to
repaint the upper left quarter of the screen.

xrefresh -white -geometry 800x400+1+1

Getting Window Information with ‘xwininfo’

The xwininfo client is a utility program that displays useful information about
windows.

Syntax and Options

The syntax for xwininfo is as follows:

~help
-id id
-name name
-root
-int
-tree
-stats
xwininfo -metric
{-english}
-bits
~events
-size
-wm
-all
| -display host:display.screen |

-help Prints a summary of the command usage.
-id Specifies the target window by window id.
-name Specifies the target window by name.

Managing Windows 6-5

-root

-int

-tree

-stats

-metric

-english

-bits
-events
-size
-wm
-all
-display

Example

Specifies the root window as the target.

Displays window information, normally shown as hexadecimal,
as decimal.

Displays ids and names of the root, parent, and child windows.

Displays window id, location, size, depth, and other
information as hexadecimal.

Displays height, width, x and y information in millimeters.

Displays height, width, x and y information in inches, feet,
yards.

Displays information about bit and storage attributes.
Displays event masks of the target window.

Displays sizing information about the target window.
Displays the window manager hints for the target window.
Displays all available information about a window.

Specifies the host, display, and screen to target.

This example illustrates the result of issuing the following command:

xwininfo -stats

Once you issue the command, select a window as the target of your inquiry by
moving the pointer into that window and clicking button 1.

xwininfo ==> Window id: 0x200013 (hpcvxRW)

==>
==>
=>
==>
>
>
>
>

1]

Upper left X: 6

Upper left Y: 6

Width: 484

Height: 316

Depth: 8

Border width: 4

Window class: InputOutput

Colormap: 0x80065

Window Bit Gravity State: NorthWestGravity

6-6 Managing Windows

1]
L}
v

Window Window Gravity State: NorthWestGravity
Window Backing Store State: NotUseful

Window Save Under State: no

Window Map State: IsViewable

Window Override Redirect State: no

Corners: +6+6 -782+6 -782-694 +6-694
-geometry =80x24+6+6

wouounou
o u
VvV V V Vv Vv

Managing Windows with the OSF/Motif Window Manager

The OSF/Motif Window Manager (mwm) is an X11 client that manages the
appearance and behavior of objects on the root window. You control mwm
and its management operations using a mouse, a keyboard, and a functional
window frame similar to Microsoft’s Presentation Manager. Additionally, mwm
has a root menu to assist you in the general control of the root window.

The mwm client receives configuration information from three files:
/usr/1ib/X11/sys.Xdefaults, /usr/1ib/X11/system.mwnrc, and
/usr/1ib/X11/app-defaults/Mwm. You can copy the first two of these files to
your home directory, as .Xdefaults and .mwmrc respectively, and edit them to
create a window manager that exactly fits your needs.

How to create your own personal window manager is the subject of the rest of
this chapter.
When to Use ‘mwm’

The OSF/Motif Window Manager is the default window manager for your X
Window System. It is started from $HOME/.x11start when you start X11. If
that file doesn’t exist, mwm is started from /usr/1ib/X11/sys.x11start.

Syntax and Options

The syntax for mwm is as follows:

. ~-display host:display.screen
mwm .
-XTm resourcestring

-display Specifies the screen to use.

Managing Windows 6-7

-Xrm Specifies using the named resource on starting.

Example
The following line in .x11start in your home directory starts mwm.
mm $Q &

The $@ passes the window manager options specified on the x11start
command line.

Managing Windows with Other Window Managers

The hpwm (HP Window Manager) and uwm clients provide an alternative to
managing windows with the OSF/Motif Window Manager.

Appendix A summarizes the differences between mwm, hpwm, and uwm.

Managing the General Appearance of Window Frames
In chapter 5, you read about /usr/1ib/X11/sys.Xdefaults and .Xdefaults.

The sys.Xdefaults file is the system file that controls the X environment of
users who don’t have a .Xdefaults file in their home directory. .Xdefaults
overrides the system-wide effects of sys.Xdefaults, enabling you to customize
your own environment while not interfering with the environments of others.

By editing .Xdefaults, you can control the general appearance of the window
frames in your environment. If you are a system administrator, you can
control the system-wide general appearance of window frames by editing
/usr/1ib/X11/sys.Xdefaults.

Three aspects of the general appearance of window frames are under your
control.

Color The color of foreground, background; and top, bottom, and
side shadows.

Tile The mixture of foreground and background color that
composes the pattern of the frame surface.

6-8 Managing Windows

Font The style (including size) of the text characters in the title bar,
menus, and icon labels.

To control color, tile (pixmap) pattern, or fonts, you specify a value for the
appropriate window manager resource. A resource controls an element of
appearance or behavior. Resources are always named for the elements they
affect.

Window Menu Minimize

Title Bar Maximize

Pointer

Resize
Border

e T T A KL
] R T T R R R

e S AN A N AR AN

Figure 6-1. A OSF/Motif Window Manager Frame Showing Frame Elements

For example, suppose you want to color the background of your window

frame (an element of appearance) Firebrick red. Edit .Xdefaults, making
Mwm*background: (the resource controlling the background color of the frame)
the color Firebrick (a color value). The line in .Xdefaults would read as
follows:

Mwmibackground: Firebrick

Managing Windows 6-9

Coloring Window Frames

You can use any of the standard X11 colors listed in /usr/1ib/X11/rgb.txt
to color frame elements. In addition, you can create your own colors using
hexadecimal values (see “Customizing the Color of Clients” in chapter 5).
Frame elements and resources exist for inactive windows (any window not
having the current keyboard focus) and for the active window (the window
having the current keyboard focus). This enables you to distinguish the active
window by giving it special “active window” colors.

Coloring Individual Frame Elements

The following table lists the individual elements of inactive and active window
frames, and the resources that control their color, for the OSF/Motif Window
Manager.

The default settings provide a 3-D visual eflect without you having to specify
the exact colors for every frame element.

6-10 Managing Windows

Table 6-1. Window Frames Resources for a Color Display

the active frame.

To color this ... Use this resource . .. The default value s ...
Background of inactive background LightGrey
frames.
Left and upper bevel of topShadowColor Lightened background
inactive frames. color
Right and lower bevel of |bottomShadowColor Darkened background
inactive frames. color
Foreground (title bar text) |foreground Darkened
of inactive frames. bottomShadowColor
Background of the active |activeBackground CadetBlue
frame.
Left and upper bevel of the | activeTopShadowColor Lightened
active frame. activeBackground color
Right and lower bevel of activeBottomShadowColor | Darkened

activeBackground color

Foreground (title bar text)
of the active frame.

activeForeground

Darkened
activeBottomShadowColor

Example

The following lines in the .Xdefaults file in your home directory give the
window manager frame a maroon foreground and a gray background. The
background color is used to generate colors for the top and bottom shadow
elements so that a 3-D effect is achieved.

The 3-D effect is useful in providing a quick visual indication of selected items,
the active window, and so on.

Mum*foreground: Maroon
Mwm*background: Gray

Managing Windows 6-11

Changing the Tiling of Window Frames With Pixmaps

A pixmap is a way of creating shades of colors. Each pixmap is composed of
tiles. A tile is a rectangle that provides a surface pattern or a visual texture

by “mixing” the foreground and background colors into a color pattern. The
concept is analogous to using ceramic tiles to provide a floor or countertop with
a pattern or texture.

Generally, the fewer the number of colors your display can produce, the more
important tiling will be to you. For example, if you had a monochrome display
(two colors—black and white), you could tile the window frames of your X
environment in shades of gray to achieve a 3-D look.

The OSF/Motif Window Manager has resources that enable you to tile the
frame background and bevels for both inactive and active windows.
Table 6-2.
Tiling Window Frames with Window Manager Resources
The default for

To tile this . .. Use this resource ... color displays is ...
Background of inactive backgroundPixmap NULL
frames.
Right and lower bevels of |bottomShadowPixmap NULL

inactive frames.

Left and upper bevels of |topShadowPixmap NULL
inactive frames.

Background of the active |activeBackgroundPixmap NULL
frame.

Right and lower bevels of |activeBottomShadowPixmap |NULL
the active frame.

Left and upper bevels of |activeTopShadowPixmap NULL
the active frame.

6-12 Managing Windows

The following table lists the acceptable values for pixmap resources:

Table 6-3. The Values to Use for Tiling Window Frames

To tile an element this color . .. Use this value . ..
The foreground color. foreground
The background color. background
A mix of 256% foreground to 75% background. 25_foreground
A mix of 50% foreground to 50% background. 50_foreground
A mix of 76% foreground to 25% background. 75 foreground
In horizontal lines alternating between the foreground and horizontal_tile

background color.

In vertical lines alternating between the foreground and background | vertical_tile
color.

In diagonal lines slanting to the right alternating between the slant_right
foreground and background color.

In diagonal lines slanting to the left alternating between the slant left
foreground and background color.

Managing Windows 6-13

The following figure illustrates the valid tile values:

l foreground | l background | | 25 foreground |

I 58_foreground] I ?5_Foreground l Ihorizontal_tilel

vertical tile | | slant_right | | slant_left |

i3

i

l

Frame Resources For Monochrome Displays

Figure 6-2. Valid Tile Values

If mwm determinges that the monitor is monochrome, and no color resources are
specified for frame elements, mwm uses defaults appropriate for monochrome
displays. Mwm*background and Mwm*activeBackground are set to White. The
following table lists the frame elements, resources, and defaults for monochrome
monitors.

6-14 Managing Windows

Table 6-4.

Window Frame Resource Values for Monochrome Monitors

The background is . .. For this resource ... The default value is ...
White topShadowColor White
White bottomShadowColor Black
White foreground Black
White topShadowPixmap foreground
White activeBackgroundPixmap |foreground -
White activeTopShowdowPixmap |50_foreground

The sys.Xdefaults file contains a set of entries that provides a more
attractive window shading for monochrome displays. These entries start with
mwm_bw, and require that you start mwm with the name mwm_bw. To do this, edit
the following line in .x11start:

mwm & #Starts the mwm window manager

to read:

mwm -name mwm_bw & #Starts the mwm window manager

You must restart X11 in order for this change to take effect.

Specifying a Different Font for the Window Manager

The default font for the text of the OSF/Motif Window Manager is the fixed
font. However, you can use the fontList resource to specify a different font
if you desire. The fontList resource can use any valid X11 font name as its
value. For more information about fonts, see “Working With Fonts” in chapter

5.

Managing Windows 6-15

The Syntax for Declaring Resources

The above general appearance resources for the OSF/Motif Window Manager
and their values are specified in sys.Xdefaults (system-wide) or .Xdefaults
(your personal environment). The syntax you use differs depending on whether
you want the resource to control the general appearance of an element or the
general appearance of that element for a particular object.

For example, the syntax you use to specify a frame background of Wheat is
different from the syntax you use to specify that only menus have a background
of Wheat.

The Syntax for the General Appearance of Elements

Use the following syntax in sys.Xdefaults or .Xdefaults to specify the
general appearance of frame elements:

Mwm*resource: value

For example, if you want the foreground and background of inactive
window frames to be the opposite ol the foreground and background of the
active window frame, and you choose the colors SteelBlue for background
and VioletRed for foreground, you would have the following lines in your
.Xdefaults file.

Mwmxbackground: SteelBlue
Mum*foreground: VioletRed
Mwm*activeBackground: VioletRed
Mwm*activeForeground: SteelBlue

The Syntax for Window Frame Elements of Particular Objects

You can specify the general appearance of window frame elements for three
particular objects.

m Menus (includes: both system and root menus).
m Icons (includes the frame elements of all icons).
m Clients (includes the frame elements of all clients).

m Feedback (window manager feedback windows).

6-16 Managing Windows

This gives you the ability to select a different color or font for a particular
object, perhaps menus, while the other objects (icons and fonts) remain the
same. To do this, use the following syntax:

menu
icon

Mwm* . *resource: value
client

feedback

For example, if you want the general appearance of the clients in your
environment to be SteelBlue and VioletRed, but want your menus to be
different, you could add the following lines to .Xdefaults.

Mwm¥background: SteelBlue
Mwm*foreground: VioletRed
Mwm*activeBackground: VioletRed
Mum*activeForeground: SteelBlue

Mwm*menu*background: SkyBlue
Mwmsmenuxforeground: White

Working with Icons

Icons provide a handy way to straighten up a cluttered workspace. They also
provide you with a great tool for efficient multi-processing. For example, you
could open several windows, start processes in each, and then iconify them
all-letting the processes run their individual courses while you sit back and
read your electronic mail and work in an editing window.

Studying Icon Anatomy

Like the other objects that appear on the root window, you can configure
the appearance of all icons in sys.Xdefaults, for system-wide icons, or
.Xdefaults, for your own personal icons. Icons consist of two parts:

m A text label.

m A graphic image.

Managing Windows 6-17

Window

Manager
Frame

Figure 6-3. An Icon Has Two Parts

The Label

An icon label is the text beneath an icon image. A label is usually supplied

by the client (via the WM_ICON_NAME window property), but some clients, for
example hpterm and xfd, provide a command-line option enabling you to write
in your own label.

Icon labels are truncated on the right to the width of the icon image, so if you
use small images, don’t get too windy with your labels.
The Image

An icon image (a bitmap) is the actual graphic illustration of the icon. An
image can come from any one of the following three sources:

client A client can use the WM_HINTS window property to specify
either an icon window or a bitmap for the window manager to
use as the icon image.

user You, the user, can specify an icon image using the iconImage
resource.

6-18 Managing Windows

default The window manager will use its own built-in default icon
image if an image is not specified elsewhere.

The window manager uses the following default order of precedence in choosing
an icon image:

1. A specific user-supplied icon image resource.
2. A client-supplied icon image.
3. A default icon image.

The resource useClientIcon lets you interchange the precedence of
user-supplied icon images and client-supplied icon images. The default value is
“False.” When the resource is set to “True,” client-specified icon images have
precedence over user-supplied icon images.

Manipulating Icons

You manipulate icons similar to the way you manipulate windows, by
positioning the pointer on the icon and clicking, double-clicking, or dragging
a mouse button (depending on what you want to happen). You can also
use icons in situations where you want to start several processes when you
start X11, but don’t want to clutter your screen with windows you won’t
immediately use; simply start the processes as icons.

Managing Windows 6-19

Operating on Icons

The following table lists the operations you can perform on icons:

Table 6-5. You Can Manipulate Icons in These Ways

To do this ...

Position the pointer
on the icon and ...

‘What this does is . ..

Turn an icon into a
window.

Double-click button 1.

Restores the window to its
former size and location.

Move an icon around on
the root window.

Drag button 1.

Moves a wire frame with
the pointer showing where
the icon will be moved.

Give an icon keyboard
input focus

Press button 1.

Makes the icon the focus of
keyboard input.

Move an icon to the top of
the window stack.

Click button 1 on an icon
that has keyboard input
focus.

Moves a partially concealed
icon to the front of the
root window.

Select an icon and display
its window menu.

Click button 1, or press
or (A1) (space).

Gives an icon keyboard
focus and displays the
icon’s window menu. The
window menu for an icon
is exactly like the window
menu of its associated
window. No window is
active while the icon has
the keyboard focus.

Starting Clients as Icons

You can start clients as icons when you start X11. This gives you the benefit
of having the client only a double-click away, while not cluttering your display
with windows you’re not using.

Some clients have iconify options, like hpterm’s ~iconic option. As you start
the client from a command line in your .x11istart or .mwmrc file, adding
the iconify option to the line enables you to start the client but to display it

6-20 Managing Windows

initially as an icon. Later, when you’re ready to use the client, you double-click
on the icon and you’re ready to go.

Controlling Icon Placement

By default, the window manager places icons in the lower left corner of the
root window. Successive icons are placed in a row proceeding toward the right.
Icons are prevented from overlapping. An icon will be placed in the position it
last occupied if no icon is already there. If that place is taken, the icon will be
placed at the next free location.

The following three resources enable you to control the placement of icons:

Table 6-6.
Controlling Icon Placement with Window Manager Resources

To specify this . .. Use this resource . .. The default value is . ..
A placement scheme for iconPlacement left bottom
icons.
The distance between iconPlacementMargin the default space between
screen edge and icons. icons
Automatic icon placement |iconAutoPlace True
by the window manager.

Changing Screen Placement

You can place icons or you can have the window manager do it for you. The
window manager will place icons automatically, based on the placement scheme
you specify with the iconPlacement resource, if you give iconAutoPlace a
value of “True.” If you would rather determine icon placement without help
from the window manager, give iconAutoPlace a value of “False.”

Managing Windows 6-21

The following table lists the icon placement schemes available to you:

Table 6-7. Schemes for Automatic Placement of lcons

If you want this icon placement . ..

Choose this scheme ...

From left to right across the top of the screen.

left top

From right to left across the top of the screen.

right top

From left to right across the bottom of the screen.

left bottom

From right to left across the bottom of the screen.

right bottom

From bottom to top along the left of the screen.

bottom left

From bottom to top along the right of the screen.

bottom right

From top to bottom along the left of the screen.

top left

From top to bottom along the right of the screen.

top right

The Syntax for Icon Placement Resources

The resources that place icons share a common syntax:

Mwm*resource value

For example, if you want automatic placement of icons starting at the top of
the screen and proceeding down the right side, you would have the following

lines in your .Xdefaults file:

Mwm*iconPlacement: top right Shecifies the placement scheme.
Mwm*iconAutoPlace: True Specifies automatic placement.

Controlling Icon Appearance and Behavior

The OSF/Motif Window Manager offers you a number of resources to control
the specific appearance and behavior of icons. Among these are resources that
enable you to select icon decoration, control icon size, and create new icon

pixmaps.

6-22 Managing Windows

Selecting Icon Decoration

Using the iconDecoration resource, you can select exactly what parts of an
icon you want to display:

Table 6-8. The Values That Control the Appearance of lcons

If you want an icon that looks like this ... Use this value ...
Just the label. label

Just the image. image
Both label and image. label image
The label of an active icon isn’t label activelabel
truncated.

Sizing Icons

Each icon image has a maximum and minimum size. The OSF/Motif Window
Manager has both default sizes as well as maximum and minimum allowable
sizes.

Table 6-9. The Maximum and Minimum Sizes for Icon Images

Maximum Size | Minimum Size

Default [50x50 pixels | 32x32 pixels

Allowable [128x 128 pixels| 16x 16 pixels

If you plan to do a lot of work with icons, remember to keep your images
within the maximum and minimum limits. How the window manager treats
an icon depends on the size of the image in relation to the maximum and
minimum sizes.

Managing Windows 6-23

Table 6-10. Icon Size Affects Icon Treatment

If an icon image is ... The window manager will . ..
Smaller than the minimum size. Act as if you specified no image.
Within maximum and minimum limits. Center the image within the maximum
area.
Larger than the maximum size. Clip the right side and bottom of the
image to fit the maximum size.

You can use the following two resources to control icon image size:

Table 6-11.
Controlling Icon Image Size with Window Manager Resources
To specify this ... Use this resource . ..
Maximum size of an icon image. iconImageMaximum
Minimum size of an icon image. iconImageMinimum

If you figure icon size based on how much screen “real estate” you can afford

to devote to icon space, bear in mind that the overall width of an icon is the

image width plus border padding and the image height is the icon height plus
border padding.

Using Custom Pixmaps

When you iconify a client, either the client supplies its own icon image, the
- window manager supplies a default image, or you supply an image of your own.

You will obtain some icon images as “ready-made” bitmaps. At other times,
you may want to use the bitmap client (discussed in chapter 5) to create one of
your own. In either case, to use your bitmap, you only need to tell the window
manager where the bitmap is located.

To tell the window manager to use a particular bitmap for an icon image, use
the iconImage resource. The value that follows this resource is the path to the
bitmap file you want to use. Note that, if specified, this resource overrides any
client-specified image.

6-24 Managing Windows

You also have the ability, using the bitmapDirectory resource, to direct

the window manager to search a specified directory for bitmaps. The
bitmapDirectory resource causes the window manager to search the specified
directory whenever a bitmap is named with no complete path. The default
value for bitmapDirectory is /usr/include/X11/bitmaps.

The Syntax for Resources that Control Icon Appearance

The resources that control icon appearance have the following syntax:

Mwm*resource: value

For example, you could use bitmapDirectory to search a bitmap subdirectory
in your home directory for custom bitmaps by inserting the following line in
your .Xdefaults file:

Mwm*bitmapDirectory: /users/yourusername/bitmap

The iconImage resource has three other syntaxes. The syntax you should use
depends on which of the following statements is true:

Table 6-12. The ‘iconimage’ Resource Has Several Syntaxes

If this is true ... Use this syntax ...

You want to use the image for Mum*iconImage: path/bitmap
all clients for which you don’t
otherwise specify an image. All
these clients will have the same
image.

You want to use the image only |Mumxclieniclass¥iconImage: path/bitmap
for a specific class of clients.

You want to use the image only |Mwmkclieniname*iconImage: path/bitmap
for a specific instance of a client
named using the client’s name
resource.

You want to use the image as Mwm*defaults*iconImage: path/bitmap
the default image whenever the
client class or name isn’t known.

Managing Windows 6-25

For example, if you want to use your own happyface bitmap for hpterm
windows and see a complete label whenever any icon is active, you would have
the following lines in your .Xdefaults file:

Mwm*Hpterm*iconImage: /users/yourusername/Bitmaps/face.bits
Mum*iconDecoration: label activelabel

Coloring Icons by Client Class

As it does for window frames, the OSI'/Motif Window Manager supplies a
number of resources that enable you to specify the colors of icon elements.

Coloring Icon Elements Individually

The following table lists icon image eleme<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>